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Abstract
The integration of visual encoders and large language mod-
els (LLMs) has driven recent progress in multimodal large
language models (MLLMs). However, the scarcity of high-
quality instruction-tuning data for vision-language tasks re-
mains a challenge. The current leading paradigm, such as
LLaVA, relies on language-only GPT-4 to generate data,
which requires pre-annotated image captions and detection
bounding boxes, suffering from understanding image details.
A practical solution to this problem would be to utilize the
available multimodal large language models to generate in-
struction data for vision-language tasks. However, it’s worth
noting that the currently accessible MLLMs are not as pow-
erful as their LLM counterparts, as they tend to produce inad-
equate responses and generate false information. As a solu-
tion for addressing the current issue, this paper proposes the
Visual Instruction Generation and Correction (VIGC) frame-
work that enables multimodal large language models to gen-
erate instruction-tuning data and progressively enhance its
quality on-the-fly. Specifically, Visual Instruction Generation
(VIG) guides the vision-language model to generate diverse
instruction-tuning data. To ensure generation quality, Visual
Instruction Correction (VIC) adopts an iterative update mech-
anism to correct any inaccuracies in data produced by VIG,
effectively reducing the risk of hallucination. Leveraging the
diverse, high-quality data generated by VIGC, we finetune
mainstream models and validate data quality based on various
evaluations. Experimental results demonstrate that VIGC not
only compensates for the shortcomings of language-only data
generation methods, but also effectively enhances the bench-
mark performance. The models, datasets, and code are avail-
able at https://opendatalab.github.io/VIGC.

Introduction
Over the past year, significant advancements have emerged
in language models, particularly with instruction tuning
in Large Language Models (LLMs). This technology en-
ables models to perform complex tasks in a zero-shot man-
ner (OpenAI 2023a,b). The fusion of visual encoders with
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Question:  Can you 
elaborate on the elements of 
the picture provided? 
Answer: The image features 
a sleek silver motorcycle 
parked in a parking lot …
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Figure 1: Comparison between the language-only GPT-4 ap-
proach and the proposed method, highlighting two key limi-
tations of the former: (1) The necessity for extensive human
annotation, and (2) The inability to process visual data, re-
sulting in a loss of detailed information.

LLMs (Touvron et al. 2023; Chiang et al. 2023) has led
to substantial strides in the field of multimodal LLMs, re-
sulting in the creation of frameworks such as BLIP-2 (Li
et al. 2023b), MiniGPT-4 (Zhu et al. 2023b), LLaVA (Liu
et al. 2023b), InstructBLIP (Dai et al. 2023) and InternLM-
XComposer (Zhang et al. 2023). These frameworks have
propelled the rapid evolution of multimodal tasks, exhibit-
ing impressive capabilities in image-text dialogue.

Traditional multimodal models follow a two-stage train-
ing process. The initial stage involves training the model
with image-text pairs to enhance feature alignment between
the two modalities. The subsequent stage utilizes high-
quality multimodal instruction tuning data to augment the
model’s ability to follow instructions, thereby improving its
response to user inquiries. However, compared to a large
amount of available multimodal pre-training data (Schuh-
mann et al. 2022; Sharma et al. 2018; Changpinyo et al.
2021; He et al. 2023), acquiring high-quality instruction
tuning data is relatively more challenging. Current high-
quality multimodal fine-tuning data (Liu et al. 2023b; Li
et al. 2023a) is primarily generated based on language-only
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GPT-4 (OpenAI 2023b) as illustrated in Figure 1-(a). This
approach necessitates costly manual pre-annotation and re-
stricts the design of questions and generated responses to
existing annotated information. Consequently, if the ques-
tion posed is not within this annotated information, GPT-4
is unable to respond. This method also loses the detailed in-
formation in the image for answerable questions.

To address this issue, researchers have started to consider
generating data with Vision-Language Models (VLMs) (Zhu
et al. 2023a; You et al. 2023) as VLMs have seen a vast
amount of image-text pairs during the pre-training phase and
inherently contain a wealth of knowledge. Currently, the ac-
cessible MLLMs are less powerful than their LLM counter-
parts. They often produce inadequate responses and generate
false information, e.g., hallucination. However, existing ap-
proaches attempt to generate data using VLMs without con-
sidering how to ensure the quality of the generated data or
validate it experimentally.

In contrast to the aforementioned methods, we propose
Visual Instruction Generation and Correction, a new method
for high-quality instruction data generation. This method,
based on existing visual-language models, guides the model
to generate diverse visual-language question-answer pairs
on new images through the fine-tuning of initial instruction
data. The ability to generate diverse data is derived from
the fact that both the visual encoder and the large language
model have been fine-tuned on extensive datasets, encom-
passing rich image understanding and logical language ca-
pabilities. However, we found that data generated directly
from provided instructions suffer from severe hallucination
issues, which is a common problem plaguing large multi-
modal models (Peng et al. 2023b; Liu et al. 2023a; Zhao
et al. 2023; Huang et al. 2023). Fortunately, our visual in-
struction correction module can significantly reduce model
hallucination phenomena through iterative updates. The pri-
mary contributions of this study include:

• We introduce Visual Instruction Generation and Correc-
tion (VIGC), a framework capable of autonomously gen-
erating high-quality image-text instruction fine-tuning
datasets. The VIGC framework consists of two sub-
modules: Visual Instruct Generation (VIG) and Visual
Instruct Correction (VIC). Specifically, the VIG gener-
ates initial visual question-answer pairs, while VIC mit-
igates model hallucination and obtains high-quality data
through an Iterative Q-Former (IQF) update strategy.

• We release a series of datasets1 (He et al. 2022) gen-
erated using VIGC, including 36,781 VIGC-LLaVA-
COCO and approximately 1.8 million VIGC-LLaVA-
Objects365, for research on large multimodal models. To
the best of our knowledge, this is the first-ever multi-
modal instruction fine-tuning dataset autonomously gen-
erated by a MLLM.

• We have conducted extensive experiments on the gen-
erated data. When trained in conjunction with the
VIGC-generated data, the performance of the LLaVA-7B
model significantly improved, even surpassing that of the

1https://opendatalab.com/OpenDataLab/VIGC-InstData

LLaVA-13B model. Furthermore, on mainstream multi-
modal evaluation datasets such as MMBench, OKVQA,
and A-OKVQA, models trained with the VIGC data uni-
formly demonstrated performance enhancements.

Related Work
Instruction-following LLMs
The domain of Natural Language Processing (NLP) has
been significantly shaped by the advent and evolution of
large language models (LLMs), including but not limited
to GPT-3 (Brown et al. 2020), PaLM (Chowdhery et al.
2022), T5 (Raffel et al. 2020), and OPT (Zhang et al. 2022).
These models, equipped with extensive training data and so-
phisticated optimization techniques, have demonstrated re-
markable performance across various tasks. However, a no-
table challenge persists in their ability to effectively fol-
low instructions, often leading to suboptimal results in di-
verse real-world applications. Efforts to address this issue
have led to the introduction of various instruction fine-tuning
datasets. Enhanced models, such as InstructGPT (Ouyang
et al. 2022), ChatGPT (OpenAI 2023a), FLAN-T5 (Chung
et al. 2022), FLAN-PaLM (Chung et al. 2022), and OPT-
IML (Iyer et al. 2022), have been developed to improve
upon zero-shot and few-shot learning capabilities, primar-
ily by learning to map instructions to the corresponding ex-
pected outputs. Despite these advancements, the generation
of instruction datasets frequently relies on pre-existing NLP
tasks, which curtails their generalizability. To augment the
quality and diversity of instructions, Wang et al. (Wang et al.
2022) introduce SELF-INSTRUCT, a methodology that em-
ploys generated instruction data to enhance the performance
of LLMs. While these methods have made significant strides
in augmenting the instruction-following capabilities of lan-
guage models, they exhibit a standard limitation in that they
cannot be directly generalized to multimodal data.

Multi-modal Instruction Tunning
Compared to creating language instruction fine-tuning
datasets, constructing multimodal instruction fine-tuning
datasets requires a thorough understanding of image content
and the development of the corresponding text. MiniGPT-4
utilizes a feature-aligned model to interpret the CC dataset
(Sharma et al. 2018; Changpinyo et al. 2021), employs Chat-
GPT for initial filtering, and ultimately curates 3,500 image-
text pairs for model refinement. However, this methodol-
ogy encounters restrictions in terms of instruction diversity
and volume. In contrast, LLaVA proposes an innovative ap-
proach based on a language-only GPT-4 (OpenAI 2023b) to
generate multimodal instruction data from information that
includes caption descriptions and target data. While this ap-
proach generates high-quality data, it demands manual an-
notation of each caption description, target information, and
question, which inherently limits scalability. To extend data
across a more comprehensive array of tasks, InstructBLIP
pioneers an Instruction template construction methodology,
converting 26 unique datasets into instruction fine-tuning
data and achieving impressive results across several tasks.
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VIG-Instruction: Generate a question based on the content 
of the given image and then answer it.
Q: What are the colors of the bus in the image?
A: The bus in the image is white and red.
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Figure 2: The proposed Visual Instruction Generation and Correction (VIGC) framework. The left panel illustrates the VIGC
training process: Instruction fine-tuning data is fed into the VIG and VIC sub-modules. VIG aims to generate image-related
question-answer pairs, while VIC refines the VIG-produced answers for precision. The right panel depicts the inference phase,
where VIGC takes an arbitrary image as input, generates initial answers, and then refines them to construct high-quality data.

Concurrently, MIMIC (Li et al. 2023a) assembles larger-
scale instruction fine-tuning datasets.

Nevertheless, all these datasets require human interven-
tion in the form of annotations, and their diversity is in-
herently limited by the existing data. By contrast, our study
aims to propose a self-guided, model-driven instruction fine-
tuning data generation method, which is capable of creating
high-quality fine-tuning data suitable for any novel image.

Visual Question Generation
Visual Question Generation (VQG) aims to generate rele-
vant questions based on provided images, which poses con-
siderable challenges due to the need for diversity, natural-
ness, and engagement. Mostafazadeh et al. (Mostafazadeh
et al. 2016) propose the task of Visual Question Genera-
tion (VQG) and attempt to establish a foundational VQG
framework, employing both retrieval-based and generative
methodologies. iQAN (Li et al. 2018) later proposed a uni-
fied, reversible network addressing both VQA and VQG
tasks, enabling both answer retrieval and question gener-
ation from images. Guiding models like Guiding Visual
Question Generation (Vedd et al. 2021) have also con-
tributed significantly to the field.

This paper proposes the Visual Instruction Generation and
Correction network, a model that generates image-related
content, similar to VQG. Unlike the existing work, our
method introduces an additional layer of complexity by de-
veloping diverse questions and providing appropriate an-
swers based on different requirement categories. Leveraging
the vast knowledge of large language models, our model’s
output outperforms traditional VQG tasks, which are usu-
ally limited by their training sample size.

Methods
This paper concentrates on leveraging the power of exist-
ing vision-language models to generate multimodal instruc-

tion following data autonomously. The proposed approach
facilitates the creation of robust and diverse fine-tuning
datasets, eliminating the requirement for intensive manual
intervention. However, utilizing existing multimodal mod-
els to achieve this objective presents substantial challenges.
To mitigate these, we introduce a self-instructing frame-
work named VIGC. Guided by existing fine-tuning data,
this framework can generate higher quality and more diverse
new data, as depicted in Figure 2.

Initial Instruction Construction
In contrast to language instructions, which can be effort-
lessly generated by standalone language models (Peng et al.
2023a; Wang et al. 2022), the construction of visual-text
multimodal instructions requires a detailed understanding of
visual content, as well as the ability to pose relevant ques-
tions and provide correct answers based on the actual con-
tent of the images. Nevertheless, existing multimodal mod-
els are deficient in their capacity to directly generate visual-
language instruction data. To overcome this limitation, we
exploit readily available instruction fine-tuning data and for-
mulate additional instruction templates, thereby facilitating
the automatic generation of instruction data.

Our proposed method is universally applicable to gen-
erating various types of image-text multimodal instruction
fine-tuning data. To elucidate our approach, we exemplify
it using the generation of LLaVA-style data instructions.
Specifically, we construct instruction templates encompass-
ing dialogue, detailed description, and complex reasoning,
following the categorization of instruction fine-tuning data
types as delineated in LLaVA. Figure 3 presents instances
of these three types of instruction templates, which are es-
sentially uncomplicated, principally requesting, “generate
T-type question-answer pairs predicated on the image con-
tent.” Theoretically, if a model can comply with these in-
struction descriptions following training, it should be profi-
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Conversation: Generate a question based on the content of 
the given image and then answer it.

VIG Instruction Sample

VIC Instruction Sample

…

…

Detail Description: Generate a question to describe the image 
content in detail and then answer it.

Complex Reasoning: Based on the given image, generate an 
in-depth reasoning question and then answer it.

Question: {Question}    Answer:

Figure 3: Template examples corresponding to instruction
tuning in VIG and VIC submodules.

cient in generating question-answer pairs.
With the instruction templates and existing visual

instruction-tuning data (i.e., Question-Answer pairs in
LLaVA), we construct a comprehensive VIG instruction-
tuning dataset as follows:

TV IG = (Xi, It, Q
t
i, A

t
i)

Nt (1)

where i ∈ {1, 2, ..., Nt}, Nt denotes the instruction type,
such conversation, detailed description, etc. Xi represents
an RGB image, Ii represents an instruction corresponding
to a specific type t, Qt

i is a question related to the image
Xi under the context of instruction It, and At

i is the answer
to the question Qt

i. Our objective is to leverage this dataset
for the training of models that, given a specific instruction
It, can generate corresponding question-answer pairs for a
given image, following the designated instruction type. Fig-
ure 2 provides illustrations of the initial instruction dataset.

Distinguished from the VIG, the VIC instruction em-
ploys an image and a query as input for its fine-tuning pro-
cess, with the objective of generating precise responses. The
dataset for the VIC instruction is presented below:

TV IC = (Xi, Q
t
i, A

t
i)

Nt (2)

Visual Instruction Generation
In alignment with current popular multimodal models such
as MiniGPT-4 (Zhu et al. 2023b) and InstructBLIP (Dai
et al. 2023), the architecture of the proposed VIGC can be
dissected into four primary components: the visual encoder
(ViT) (Fang et al. 2023), the large language model (Vicuna)
(Chiang et al. 2023), the Q-Former (Li et al. 2023b) for vi-
sual feature extraction, and the Fully-Connected (FC) pro-
jection for reconciling visual-language features. Function-
ally, the model can be further segmented into two distinc-
tive sub-modules: the Visual Instruction Generation (VIG)
module and the Visual Instruction Correction (VIC) module.
It is imperative to underscore that these two sub-modules

share network parameters, the primary differentiator being
the data type employed for training.

The principal objective of the VIG module is to au-
tonomously produce relevant visual question-answer pairs
that correspond to a specific instructional command for any
given image. Figure 2 illustrates the process that the VIG
module follows in the training phase. In the training phase,
the VIG module stochastically selects an image, which is
subsequently processed via a visual encoder. It generates a
set of fixed visual feature embeddings. The Q-Former mod-
ule, purposefully designed to be aware of instructional infor-
mation, further refines these visual features. At this stage,
the model employs learnable visual queries that perform
self-attention operations in conjunction with the instruction.
This operation is followed by a cross-attention phase with
visual embeddings. This mechanism impels the visual fea-
tures to concentrate on the instructional information, thereby
augmenting their relevance and precision within the context
of the assigned task. Following the cross-attention phase, the
refined features are channeled through an FC mapping layer,
a crucial step that aligns visual features with their linguis-
tic counterparts, thereby ensuring a seamless integration of
visual and language features. Subsequently, the instruction-
aligned features are ingested by the language model. This
process guides the model to generate the predicted results.
Specifically, the objective in this context is to generate vi-
sual questions and answers that are intrinsically linked to the
content of image Xi, the nature of which is determined by
the instruction. We utilize the original auto-regressive loss
function inherent to the large language model. This method-
ology guides the model in generating sentences that align
with the question-answer pairs provided in the training set.

Visual Instruction Correction
In the exploration conducted for this study, we discovered
that existing multimodal models (Liu et al. 2023b), (Dai
et al. 2023), much like language models (Radford et al.
2018, 2019; Brown et al. 2020; OpenAI 2023b,a), often ex-
hibit hallucination issues. This hallucination phenomenon is
also present in the data generated by the VIG, especially
in instances of extensive descriptions. We attribute this to
the tendency of multimodal models to progressively rely on
the current answer text during the answer generation phase,
thereby gradually neglecting the image information and con-
sequently leading to the description of targets not present
in the image. To eliminate the hallucination phenomenon in
generated data and ensure that downstream tasks based on
this data are not contaminated, we specifically introduce an
instruction correction module to update the answers and re-
duce the occurrence of hallucinations.

To effectively utilize the VIC, specific actions need to
be undertaken during both the model training and inference
stages:

During the training phase: The goal of the VIG phase is to
generate corresponding visual question-answer pairs given
an instruction. Conversely, the objective of the VIC training
phase is to supply the model with a Question, thereby direct-
ing the model to focus on extracting features pertinent to the
input question/text during the Q-Former feature extraction
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process. These features lay the groundwork for subsequent
answers.

During the inference phase: After training the model us-
ing the aforementioned VIC method, it can take the ques-
tions from the question-answer pairs generated by the VIG
as input and regenerate answers. Since the model places
greater emphasis on the question when formulating re-
sponses, the generated results are typically more accurate.
Furthermore, we iterate this Q-Former feature updating pro-
cess, termed as Iterativate-Q-Former (IQF), as illustrated in
the VIGC inference phase in Figure 2. Before deploying the
VIC module, we initially generate the initial question (Q)
and answer (A) using the VIG. In the first iteration, we use
the Instruction and Question as inputs to output answers A1

and Ā1, where A1 represents the first sentence of the answer
and Ā1 signifies all content following the first sentence. In
the second iteration, we input the Instruction, Question, and
the answer A1 from the previous step to predict A2, and this
process continues iteratively until a termination symbol is
encountered. The efficacy of this iterative approach is pri-
marily due to the continual updating of visual features with
the most recent textual information, making subsequent re-
sults more accurate. However, it should be noted that while
this method is highly beneficial for providing detailed de-
scriptions of image content, its effectiveness for dialogue
tasks and inference tasks is relatively limited. This is be-
cause dialogue tasks usually consist of single sentences, and
the subsequent content in inference tasks does not heavily
depend on image information.

Experiments
Datasets
Training Data. We trained the VIGC network using two
types of visual-language instruction fine-tuning data. The
first type, represented by the LLaVA dataset (Liu et al.
2023b), is manually curated and combined with language-
only GPT-4 (OpenAI 2023b) for multimodal models. It in-
cludes 150K training samples, subdivided into simple dia-
logue (57,669 samples), detailed description (23,240 sam-
ples), and complex reasoning vision-language data (76,803
samples). This dataset spans various facets of multimodal
dialogue, including category recognition, counting, action
recognition, and scene recognition. The detailed descrip-
tions demand careful image observation and comprehensive
detailing, while the complex reasoning tasks require deep
inference and external knowledge integration. The second
type of data is multimodal instruction fine-tuning data de-
rived from publicly available image-text datasets. Specifi-
cally, we used OKVQA (Marino et al. 2019) and A-OKVQA
(Schwenk et al. 2022) datasets, as utilized in InstructBLIP
(Dai et al. 2023), for VIGC training. These datasets, neces-
sitating extensive external knowledge, are ideal for assessing
the VIGC’s capabilities.
Inference Data. Following the VIGC network training, we
generated fine-tuning data for multimodal instruction using
image datasets. We employed two distinct datasets, COCO
(Lin et al. 2014) and Objects365 (Shao et al. 2019), to eval-
uate VIGC’s effectiveness in handling data within the same

or different image domains. The COCO dataset serves as
the foundation for the construction of the LLaVA, OKVQA,
and A-OKVQA datasets. It’s crucial to emphasize that dur-
ing the data generation phase, we intentionally omitted any
images that were previously included in the test set to ensure
the fairness and effectiveness of the evaluation.

Implementation Details
During the training phase of VIGC, we utilize the MiniGPT-
4 (Zhu et al. 2023b) first-stage pre-trained model as the
source of initial parameters. This ensures that the ini-
tial model does not incorporate additional instruction fine-
tuning data for training, thereby preserving the fairness of
downstream task validation. This model encompasses the
ViT-G/14 from EVA-CLIP (Fang et al. 2023), the Q-Former
(Li et al. 2023b), and a linear projection layer. The lan-
guage models employed are Vicuna7B and Vicuna13B (Chi-
ang et al. 2023). It is noteworthy that, as illustrated in Figure
1, our Q-Former is designed to receive either Instruction or
Question text simultaneously, which is crucial for the itera-
tive correction in VIC. Therefore, we utilize the Q-Former
from BLIP2-FlanT5XXL (Li et al. 2023b) as the initial pa-
rameters for the Q-Former. We designate this network model
as MiniGPT-4+. During the training process, only the pa-
rameters of the Q-Former and the linear projection layer
are subjected to fine-tuning, while the parameters of the
language and visual models remain constant. The training
is conducted throughout 10 epochs, with the model’s per-
formance being validated after each epoch. The model that
demonstrates the best performance is subsequently selected
for data generation.

In terms of batch sizes, we utilize 64 for both 7B and 13B
models. The entire training process, executed on 8 A100
(80GB) GPUs, completes in approximately 10 hours.

LLaVA Data and Evaluation
Dataset Analysis. In the pursuit of generating a more di-
verse set of LLaVA-like data, the VIGC model is trained
using a combination of LLaVA-150K data and three types
of instruction templates. During the inference phase, we uti-
lized images from the COCO 2017 training set, intentionally
excluding those already included in the LLaVA dataset. This
resulted in the selection of a total of 36,781 initial images,
which served as the foundation for instruction data genera-
tion; we refer to this data as coco-extra, which serves as the
default supplementary data used for model training during
evaluation.

Based on the aforementioned data, the VIG network gen-
erates diverse initial questions and answers. Subsequently,
the VIC network refines the outputs by taking the questions
and the existing answers as inputs through the Iterative Q-
Former (IQF) operation, thus generating higher-quality re-
sponses. Figure 4 illustrates the three categories of data gen-
erated via the VIGC process:

• Conversation: The questions are typically specific, elicit-
ing concise and clear responses.

• Detail Description: The questions are relatively fixed and
revolve around describing the image’s content. This re-
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Answer (VIG): 
The cat is sitting or standing in front of a 
television, watching a bird on the screen.

Answer (VIC): 
The cat is sitting or standing in front of a large television screen, 
watching a bird fly on the screen.

Answer (VIG): 
The image features a cat sitting in front of a large television 
screen, attentively watching a show featuring two birds on the 
screen. The television is positioned at the center of the scene, 
capturing the cat's full attention. 
In addition to the television, there are several books scattered 
around the room. Some of them are placed near the television, 
while others are located closer to the edges of the scene. A small 
bowl can also be spotted in the room, likely used for food or other 
items.

Answer (VIC): 
The image features a cat sitting in front of a large television 
screen that displays a scene of birds flying, capturing the cat‘s 
attention. The cat is sitting on a desk or counter in front of the 
television, and it appears to be engrossed in watching the birds 
on the screen. The cat’s posture and facial expression suggest 
that it is intrigued by the moving images on the television. The 
cat‘s presence in front of the television is a common sight in 
many households, as cats are known to be fascinated by moving 
images, especially those that involve other animals. In this case, 
the birds flying on the screen have likely caught …

Answer (VIG): 
The cat might be attracted to the TV screen due to the presence of 
a bird on the screen. Cats are naturally curious creatures, and they 
are often drawn to moving objects, especially those that resemble 
prey. In this case, the bird on the TV screen is likely captivating 
the cat‘s attention, making it an interesting and engaging visual 
stimulus for the cat. Additionally, cats may also be attracted to the 
colorful and dynamic nature of …

Answer (VIC): 
The cat might be attracted to the TV screen because it is 
displaying an image of a bird, which is a natural prey for cats. 
Cats have a strong instinct to hunt and chase moving objects, 
especially those that resemble potential prey. In this case, the bird 
on the TV screen triggers the cat's hunting instinct, making it 
curious and drawn to the screen. Additionally, cats are often 
fascinated by bright and colorful …

Question: Can you elaborate on the elements of the picture provided?

Question:  What is the cat doing in the image?   

Question: Why might the cat be attracted to the TV screen?  

Conversation

Detail Description

Complex Reasoning

Figure 4: Generated instructions based on the proposed VIGC.

Model Metrics

Conv Detail Complex All

LLaVA-7B (Baseline) 75.1 75.4 92.3 81.0

add 36K Conv (VIG) 80.9 76.1 92.6 83.3
add 36K Conv (VIC) 83.9 76.9 90.9 84.0

add 36K Detail (VIG) 80.2 72.7 90.9 81.4
add 36K Detail (VIC) 83.3 80.6 93.1 85.8

add 36K Complex (VIG) 81.4 75.6 90.5 82.6
add 36K Complex (VIC) 80.2 76.2 93.2 83.3

replace 10K Conv 78.2 76.5 91.6 82.1
replace 10K Detail 75.8 79.8 91.2 82.2
replace 10K Complex 77.5 77.8 92.8 82.8
replace Combined 78.3 76.6 92.4 82.5

Table 1: Comparative evaluation of VIGC data addition vs.
replacement in model training on the LLaVA evaluation

quires the model to clearly observe all targets within the
image. It is observed that the detailed descriptions gen-
erated directly from VIG are fraught with numerous illu-
sions. However, after the application of VIC, these illu-
sory phenomena have significantly diminished.

• Complex Reasoning: The posed questions necessitate the
integration of external knowledge and the application of
sophisticated logical reasoning skills.

Overall, the quality of the question-answer pairs au-
tonomously generated by the model has exceeded our initial

expectations. We posit that this rich new knowledge inher-
ently resides within the language model itself, and we have
merely employed multimodal instruction fine-tuning to dis-
till this knowledge onto new multimodal data.
Dataset Evaluation. Based on the generated data, we con-
ducted detailed ablation experiments on LLaVA-7B to ver-
ify the performance improvement of the model after training
with the generated data. The evaluation method used here is
the quantitative evaluation proposed by LLaVA, where GPT-
4 assesses the quality of the model’s responses to given eval-
uation questions, which can be understood as relative scores
compared to GPT-4. LLaVA provides 30 test images, each
containing three types of questions, for 90 questions.

Table 1 presents the results of augmenting the original
LLaVA-150K dataset with three types of generated data,
followed by fine-tuning the LLaVA first-stage model with
instructions. Including instruction data directly generated
from VIG during the training phase has proven to be ben-
eficial. We observed a marginal improvement when adding
detailed description data generated by VIG, which can be
attributed to the severe illusions present in this data. In con-
trast, the incorporation of conversation and complex reason-
ing data has led to appreciable performance gains.

Further refining the data using VIC and then training the
model with the augmented conversation data, detailed de-
scription data, and complex reasoning data resulted in addi-
tional improvements. The performance metrics have reached
84.0%, 85.8%, and 83.3%, respectively. These results under-
score the critical role of VIC in eliminating hallucinations,
thereby enhancing the model’s overall performance. Simul-
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MMBench LLaVA
Method LR AR RR FP-S FP-C CP Overall Conv Detail Complex All

MiniGPT-4+ 10.0 31.3 7.83 18.9 13.1 43.0 24.4 83.5 77.8 92.4 84.7
MiniGPT-4+ w/ coco 11.7 27.8 19.1 27.9 11.0 44.3 27.5(↑ 3.1) 84.1 84.1 92.7 87.0(↑ 2.3)

Table 2: Performance of MiniGPT-4+ models on MMBench and LLaVA-eval datasets. MMBench metric include logic rea-
soning (LR), attribute reasoning (AR), relation reasoning (RR), fine-grained perception at instance-level (FP-S), fine-grained
perception at cross-instance (FP-C), and coarse perception (CP).

Model Conv Detail Complex All

LLaVA-7B 75.1 75.4 92.3 81.0
w/ coco 83.3 80.6 93.1 85.8(↑ 4.8)
w/ objects365 86.8 77.6 90.9 85.2

LLaVA-13B* 82.7 76.6 94.8 84.8
w/ coco 88.9 77.4 93.5 86.8(↑ 2.0)

Table 3: Relative scores for different settings w.r.t. GPT-
4 (language-only) on LLaVA-eval Dataset. The results for
LLaVA-13B are reproduced from (Liu et al. 2023b).

Model OKVQA A-OKVQA

PaLM-E (Driess et al. 2023) 66.1 -
PromptCap (Hu et al. 2022) 60.4 56.3
MiniGPT-4+ w/o VIGC 59.1 58.3
MiniGPT-4+ w/ VIGC 59.8(↑ 0.7) 58.9(↑ 0.6)
InstructBLIP w/o VIGC 63.1 62.5
InstructBLIP w/ VIGC 63.8 (↑ 0.7) 64.1 (↑ 1.6)

Table 4: Results of finetuning MiniGPT-4+ and Instruct-
BLIP on OKVQA and A-OKVQA dataset.

taneously, to validate the superiority of the VIGC-generated
dataset over the LLaVA dataset, we conducted an experi-
ment where we randomly replaced 10,000 instances from
each type of data, as well as a complete replacement of
all three types of data. The experimental results indicated
that, under the condition of constant data volume, the per-
formance of the model trained on a mixture of the LLaVA
dataset and the VIGC dataset surpasses that of the model
trained solely on the LLaVA dataset.

Table 3 presents experiments conducted on different
datasets and models of varying sizes, substantiating that the
use of generated data from different domains, such as Ob-
jects365 and COCO, can still lead to remarkable perfor-
mance improvements. This offers a novel solution for en-
hancing the performance of cross-domain tasks. We also
conducted experiments on LLaVA-13B, proving that perfor-
mance enhancement can be achieved on larger models.

We also evaluated the performance of the VIGC model on
MMBench, LLaVA (as shown in Table 2) and further fine-
tuned the VIGC model based on 36K COCO data generated
by VIGC. We discovered that following this self-iterative
training process, the model performance improved on both

MMBench and LLaVA. This promising capability of self-
enhancement through iterative training is a subject we plan
to continue exploring in our future research.

OK-VQA Dataset and Evaluation
To further assess the quality of the data generated by
the VIGC model, we conducted training and evaluation
on the OKVQA dataset, which requires external knowl-
edge. Specifically, we trained the VIGC network using
the OKVQA dataset and corresponding instruction tem-
plates. Subsequently, we generated additional instruction
fine-tuning data based on VIGC on COCO. Ultimately, we
fine-tuned InstructBLIP based on OKVQA and the gener-
ated data. We found that despite InstructBLIP already utiliz-
ing a substantial amount of data in the instruction fine-tuning
phase, the use of additional generated data for downstream
task fine-tuning still enhanced the model’s performance on
specific datasets. We performed the same experimental vali-
dation on A-OKVQA.

The experimental results are presented in Table 4. It can
be seen that the performance of the InstructBLIP model,
when fine-tuned with the addition of generated data, outper-
forms the model only fine-tuned with original data. There
were improvements of 0.7% and 1.6% on OKVQA and A-
OKVQA, respectively, achieving state-of-the-art results for
models of this scale on both datasets. BUsing the MiniGPT-
4+ pre-training model, we arrived at similar conclusions.
This demonstrates that generated data can effectively en-
hance downstream fine-tuning performance, a finding that
holds significant value for domains where data acquisition
is challenging.

Conclusion
We introduce the Visual Instruction Generation and Correc-
tion (VIGC) framework for generating high-quality vision-
language instruction data. Using VIGC, we produced di-
verse, validated multimodal instruction data on COCO and
Objects365 datasets. The framework provides an efficient
means for enhancing instruction tuning data. While VIGC
significantly reduces model hallucination, some instances
persist, necessitating further exploration into multimodal
hallucination solutions.
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