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A B S T R A C T

In recent years, the computer vision domain has witnessed a surge of interest in interactive object segmentation,
an area of study that seeks to expedite the annotation process for pixel-wise segmentation tasks through user
guidance. Despite this growing focus, existing methods mainly focus on a single type of pre-annotation and
neglect the quality of boundary prediction, which significantly influences subsequent manual adjustments to
segmentation boundaries. To address these limitations, we introduce a novel end-to-end network to facilitate
more precise building segmentation using diverse types of user guidance. In our proposed method, a centroid
map is generated to provide foreground prior information crucial to the subsequent segmentation procedure,
and the boundary correction module automatically refines the segmentation mask from existing segmentation
networks. Extensive experiments on two popular building extraction datasets demonstrate that our method
outperforms all existing approaches given various user guidance (bounding boxes, inside-outside points, or
extreme points), achieving the IoU scores of over 95% on SpaceNet-Vegas dataset and over 93% on Inria-
building dataset. The remarkable performance of our method further demonstrates its immense potential
to alleviate the labor-intensive annotation process associated with remote sensing datasets. The code of our
proposed method is available at https://github.com/StephenDHYang/UGBS-pytorch.
1. Introduction

Recently, the rapid development of semantic segmentation in both
computer vision (Long et al., 2015; Ronneberger et al., 2015) and
remote sensing domains (Li et al., 2019) has been facilitated by the
incorporation of precise pixel-wise annotation methods and the advent
of Fully Convolutional Networks (FCNs). Nevertheless, generating ac-
curate pixel-level segmentation labels remains a labor-intensive and
time-consuming process, particularly for remote sensing image annota-
tion, which necessitates the involvement of human experts possessing
specialized background knowledge (Wu et al., 2023). To mitigate re-
liance on high-quality segmentation annotations, there is a burgeoning
interest in developing interactive segmentation strategies that strive to
produce more accurate segmentation results by providing informative
priors (auxiliary pre-annotations) such as bounding boxes (Rother et al.,
2004; Xu et al., 2017) and clicks (Liew et al., 2017; Maninis et al.,
2018). By employing this approach, human annotators can perform
subsequent modifications to the segmentation results to obtain the
final pixel-wise annotation. This interactive process typically demands
considerably less annotation time compared with traditional methods
of conducting pixel-wise annotation on the original input images.

∗ Corresponding author.
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We first meticulously disentangle the entire process of interactive
object segmentation methods. As depicted in the top of Fig. 1, current
interactive object segmentation methods typically comprise three prin-
cipal stages. Generally, the inference speed of the second stage is rapid,
rendering the required time negligible. Consequently, it is crucial to
minimize user interaction time during the first and third stages while
simultaneously preserving the quality of the final prediction. However,
existing methods rely on simplistic auxiliary pre-annotations to reduce
the time needed to provide pre-annotation in the first stage, focus-
ing predominantly on enhancing segmentation quality in the second
stage (Papadopoulos et al., 2017; Maninis et al., 2018; Zhang et al.,
2020). These approaches neglect to analyze the fundamental reasons
behind the disparities in segmentation results derived from different
types of pre-annotations. Simultaneously, user correction time in the
third stage tends to be considerably longer than that of the first two
stages due to the disregard for boundary segmentation accuracy in
current methodologies.

In this study, we initially investigate the effect of various types
of user guidance on segmentation performance, concluding that the
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Fig. 1. The general process of the interactive object segmentation, including (a)
providing a pre-annotation (with user guidance); (b) predicting the segmentation mask
by neural network; (c) adjusting the predicted boundary polygon by user (moving the
incorrect vertices, adding the missing regions, etc.) The goal of our method is to reduce
user interactive labor.

additional prior information of pre-annotation in the first stage can sub-
stantially diminish both the prediction scope and prediction difficulties
of the target. However, previous interactive segmentation methods (Pa-
padopoulos et al., 2017; Maninis et al., 2018; Zhang et al., 2020) focus
on a single type of pre-annotation, which limits their applications in
various practical scenarios. Drawing inspiration from this observation,
a centroid map is introduced to the segmentation network to further
enhance the segmentation results. Additionally, we investigate the
boundary correction capacity of the segmentation model to reduce
the human effort required for subsequent boundary adjustments. As
a result, we propose a novel segmentation network, that integrates
centroid map prediction, segmentation mask prediction, and boundary
correction within a unified model, and supports multiple types of user
guidance. Experimental results illustrate that our method achieves the
IoU score of 95.8% and 93.1% on the SpaceNet-Vegas and the Inria-
building datasets with only three or four user clicks, and improves the
Boundary F-score by 3% and Boundary IoU by 4% compared with the
current state-of-the-art methods. The main contributions of this work
can be summarized as follows:

• We propose an end-to-end building segmentation network that
supports various types of pre-annotations by user guidance (i.e.,
bounding boxes, inside-outside points, and extreme points).

• The proposed method introduces two novel modules, i.e., a cen-
troid map prediction module that provides additional foreground
prior information for the subsequent segmentation model, and a
boundary correction module that further improves the segmenta-
tion boundary performance.

• The proposed method is evaluated on two popular building ex-
traction benchmarks, i.e., SpaceNet-Vegas (Van Etten et al., 2018)
and Inria-building datasets (Maggiori et al., 2017), achieving
2

much better results in both IoU and boundary segmentation per-
formance (BF-score Perazzi et al., 2016 and BIoU Cheng et al.,
2021) compared with all existing state-of-the-art methods.

2. Related work

2.1. Building extraction

Building footprint extraction from high-resolution aerial or satellite
images has been extensively studied for decades (Ling et al., 2012; Yu
et al., 2022; Li et al., 2022; Liu et al., 2023). With the rapid progress
of deep learning methods for remote sensing image analysis, recent
building extraction studies are mostly based on pixel-wise semantic
and instance segmentation models (Li et al., 2019; Liu et al., 2022).
To improve the building segmentation performance, various strategies
are proposed and combined with the pixel-wise segmentation network,
such as data fusion (Sun et al., 2018; Xie et al., 2023), multi-task
learning (Turker and Koc-San, 2015; Li et al., 2021), boundary reg-
ularization (Wei et al., 2019), etc. Many studies propose polygonal
building extraction methods to obtain the vector building footprints,
which either propose post-processing methods to vectorize the pixel-
wise segmentation results (Li et al., 2020), or design polygon-based
models to directly predict the polygon vertices (Castrejon et al., 2017;
Acuna et al., 2018; Ling et al., 2019). In addition, many recently
proposed methods concentrate on extracting individual buildings from
the cropped images which are sectioned off by bounding boxes of
ground truth (GT bboxes) (Li et al., 2023) Among these studies, the
active contour model (ACM) is a prevalent technique often utilized for
the extraction of individual buildings., such as DSAC (Marcos et al.,
2018), DarNet (Cheng et al., 2019), and CVNet (Xu et al., 2022).

However, the segmentation boundaries of existing building extrac-
tion studies are still far from the actual demand and require substantial
efforts for further manual correction. In this study, we explore differ-
ent types of pre-annotations for interactive segmentation and design
new modules, which significantly improve the boundary prediction
performance.

2.2. Interactive segmentation

Interactive segmentation aims at efficiently extracting the regions
of interest from an image with the prior knowledge from user guid-
ance (Ramadan et al., 2020; Yang et al., 2022), which facilitates the
segmentation result improvements and reduces the resource consump-
tion. Xu et al. adopt bounding box and foreground and background
clicks (Xu et al., 2017), while Liew et al. (2017) improve their method
by local feature extraction. For the polygon-based method, Castrejon
et al. (2017), Acuna et al. (2018) and Ling et al. (2019) form the
closed polygon annotation by multi-point labeling. For the mask-based
method, Papadopoulos et al. (2017) propose an efficient way for object
annotation with four extreme points, i.e., the top, bottom, left-most
and right-most points. Maninis et al. (2018) use extreme points in
interactive segmentation and achieve a significant improvement. For
the sake of concise interaction and providing rich priors, Zhang et al.
(2020) propose the inside-outside guidance (IOG) with the bounding
box and foreground click annotations, and adopt a coarse-to-fine pyra-
mid neural network (Chen et al., 2018a). Several recent studies explore
the interactive segmentation methods for remote sensing images of
urban scenes (Lenczner et al., 2022; Yang et al., 2023). However, the
studies on interactive segmentation for remote sensing images are still
at a very early stage.

Moreover, there are few boundary-aware interactive segmentation
methods, which is hindered by the utility of interactive information
and the complexity of post-processing. First, interactive segmentation
takes both image and interactive pre-annotation as input, which con-
tains more foreground and background priors. The predicted boundary
can become preciser via making full use of this prior information.
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Fig. 2. Framework of our method, which is composed of three consecutive sub-modules: (1) the centroid map prediction module, which concatenates the image and user guidance
as input and generates the centroid map prediction; (2) the segmentation prediction module, which concatenates the image, user guidance and centroid map prediction as input
and infers the object mask; (3) the boundary correction module, which concatenates the image, user guidance and object mask as input and refines the object boundary. The user
guidance is converted into a gray-scale map (1 channel for bounding box, 2 channels for inside-outside points, and 1 channel for extreme points).
Second, many boundary-related methods (Cheng et al., 2020; Guo
et al., 2022) are independent post-processing networks, which achieve
satisfying performance but are too complex and time-consuming for the
interactive scenario.

In summary, the existing interactive segmentation methods focus
on a single type of pre-annotation and do not pay much attention to
boundary prediction, which are important aspects in practical anno-
tation scenarios, and fixing the low-fidelity boundary will consume a
huge amount of time. To address the above deficiencies, we propose
an end-to-end interactive segmentation approach that supports various
types of pre-annotations and involves novel boundary-aware modules.

3. Method

3.1. User guidance analysis.

Before introducing the three modules of the proposed method, we
first analyze the characteristics of different pre-annotation types by
user guidance. User guidance can provide the prior information of the
foreground and background regions. It also helps to point out which
object needs to be segmented in a multi-object image.

Bounding box. The bounding box, provided as the most simple
and direct pre-annotation, is widely used in the interactive object
segmentation process (Rother et al., 2004; Castrejon et al., 2017; Acuna
et al., 2018; Ling et al., 2019). Except for the simplicity of the bounding
box annotation, there are two more reasons why many studies use it
as pre-annotation. To begin with, given a bounding box around the
object, the outside regions can be directly ignored. Besides, the task
is converted to foreground/background discrimination at a fixed scale,
which reduces the complexity of model representation.

Extreme points. Considering that obtaining a tight and accu-
rate bounding box is cognitively demanding, the pre-annotation of
four extreme points (i.e., top, bottom, left-most, right-most) is intro-
duced (Maninis et al., 2018) to provide more object-related informa-
tion with only a few extra labeling efforts. In fact, extreme points
can be converted to bounding boxes directly and provide boundary
information on four key positions of the object.
3

Inside-outside points. The pre-annotation of inside-outside points
is proposed by Zhang et al. (2020), which uses a horizontal and
a vertical guideline to speed up drawing a bounding box and take
corresponding corner points as outside points. In addition, an inside
point located around the object center needs to be provided. These two
methods enable the improvement of segmentation performance with
only a little extra time.

In our method, the choice of pre-annotation is flexible in terms
of the practical requirements. The combination method of the pre-
annotations and three modules will be introduced in Section 3.5.

3.2. Centroid map prediction module

Essentially, both extreme points and inside-outside points pro-
vide critical information, i.e., boundary information and foreground-
background correlation information, respectively. Extreme points pro-
vide boundary information to guide the network to get better bound-
ary discrimination. Inside-outside points provide both foreground and
background priors, which are more conducive to extract object masks.
From this perspective, we introduce a centroid map to leverage ad-
ditional foreground information for segmentation automatically. If
we can acquire more prior information from the user guidance, the
model can better solve the segmentation problem. Specifically, in the
first stage, instead of predicting the segmentation from only an RGB
image and the corresponding pre-annotation, we also estimate a coarse
foreground probability map for the segmentation object, i.e., centroid
map. The ground truth of the centroid map in this paper denotes the
distance between each pixel to the object boundary.2 The farther the
distance from the nearest boundary is, the higher the probability it is
to be a foreground pixel. Let 𝑔𝑡 denotes the ground truth foreground
mask,  = {𝑙1,… , 𝑙𝑛} denotes the boundary of 𝑔𝑡 with 𝑛 pixels, the
centroid map  is defined as:

𝑖𝑗 = min
𝑖,𝑗∈𝑔𝑡 ,𝑘∈

‖𝑚𝑖𝑗 − 𝑙𝑘‖2, (1)

2 The ground truth of the centroid map in our method is generated via
scipy.ndimage.morphology.distance_transform_edt.
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where 𝑚𝑖𝑗 denotes the pixel at position (i, j) of the foreground mask
𝑔𝑡. As shown in Fig. 2, the pixel furthest from the object boundaries

as the largest probability values. Although the predicted centroid map
s rough, it still provides meaningful information, i.e., regions with
ery high/low probability values indicate the foreground/background
lements, respectively. Furthermore, the object boundary is usually
ocated in areas with ambiguous probability values. Benefiting from the
redicted centroid map, the segmentation model achieves soft attention
uidance for producing more accurate boundary predictions than using
nly pre-annotations, which indicates the centroid map is an enhanced
rior for human annotation.

.3. Segmentation prediction module

In the segmentation module of the proposed method, we utilize a
egmentation network for object mask prediction. The network input
onsists of three parts, i.e., the RGB image, the pre-annotations, and
he object centroid map generated from the centroid map prediction
odule. The input is cropped by the pre-annotation, and several re-

axed pixels are adopted for context introduction. Similar to the IOG
ethod (Zhang et al., 2020), considering the usage of multi-level fea-

ure, we incorporate a coarse-to-fine CPN structure (Chen et al., 2018a)
nto ResNet-50/ResNet-101-based DeepLabV3+ (Chen et al., 2018b)
rchitecture. The CPN structure fuses high segmentation information
ith low-level details, which can further enhance the robustness of fea-

ures extracted from the popular DeepLabV3+ model. The segmentation
odule can be easily updated by other segmentation backbones, and
e conduct a detailed comparison of different backbones in the ablation
xperiments.

Algorithm 1: Boundary Perturbation Operation.
Input: Prediction mask 𝑠𝑒𝑔 .
Output: Perturbed mask 𝑝𝑒𝑟𝑡.

1 Get vertices set 𝑉 ← findContours(𝑠𝑒𝑔 );
2 Get vertices subset by random drop 𝑉 ′ ← random.sample(𝑉 , sample_ratio=0.9);
3 Generate sampled mask ′

𝑠𝑒𝑔 ← drawContours(𝑉 ′);
4 𝑝𝑒𝑟𝑡 = ′

𝑠𝑒𝑔 ;
5 while IoU(𝑝𝑒𝑟𝑡, 𝑠𝑒𝑔) > 𝐼𝑜𝑈𝑡𝑎𝑟𝑔𝑒𝑡 do
6 ℎ,𝑤 ← the shape of 𝑠𝑒𝑔 ;
7 𝑥 ← random.randint(w);
8 𝑦 ← random.randint(h);
9 𝛥𝑤 ← random.randint(𝑥 + 1, 𝑤 + 1);
10 𝛥ℎ ← random.randint(𝑦 + 1, ℎ + 1);
11 if random.rand() < 0.25 then
12 Randomly modify the foreground region by replacing 0/1;
13 𝑥′ ← ⌊(𝑥 + 𝛥𝑤)∕2⌋;
14 𝑦′ ← ⌊(𝑦 + 𝛥ℎ)∕2⌋;
15 𝑝𝑒𝑟𝑡(𝑥′ , 𝑦′) ← random.randint(2)∗ 255;

16 if random.rand() < 0.5 then
17 Conduct dilation operation with a random kernel size of (3, 10);
18 𝑝𝑒𝑟𝑡(𝑦 ∶ 𝛥ℎ, 𝑥 ∶ 𝛥𝑤) ←

𝑝𝑒𝑟𝑡(𝑦 ∶ 𝛥ℎ, 𝑥 ∶ 𝛥𝑤)⊕𝐾𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(3, 10));
19 else
20 Conduct erosion operation with a random kernel size of (3, 10);
21 𝑝𝑒𝑟𝑡(𝑦 ∶ 𝛥ℎ, 𝑥 ∶ 𝛥𝑤) ←

𝑝𝑒𝑟𝑡(𝑦 ∶ 𝛥ℎ, 𝑥 ∶ 𝛥𝑤)⊖𝐾𝑒𝑟𝑜𝑠𝑖𝑜𝑛(𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(3, 10));

2 return 𝑝𝑒𝑟𝑡

3.4. Boundary correction module

Robust segmentation results can be obtained from the first two
modules. Following the general interactive annotation process, the
segmentation mask can be directly converted into an object polygon,3

hich is convenient to be edited and adjusted into a tight and accurate
oundary polygon by the human annotators. Fig. 1 shows the details

3 This can be implemented conveniently via combining findContours and
pproxPolyDP functions in Opencv.
4

of the boundary adjustment process. Obviously, when the predicted
boundary mask is coarse, the annotator needs to conduct a lot of
adjustments to get a tight and accurate boundary polygon. From this
perspective, a boundary correction module is introduced to alleviate
the above issue in the third stage of the proposed method.

Based on the motivation to reduce human labor, we intuitively
design a boundary correction module that is simple but effective for
boundary refinement. Inaccurate boundary pixels are expected to be
corrected via this module. Moreover, we find the buildings with
hollows are error-prone, we hope the boundary correction module
can also fix some wrong pixel predictions within the building, not
only limited to narrow boundary regions. Thus we also set a random
modified pixel operation for the perturbation. Consequently, we adopt
a segmentation perturbation strategy on the input segmentation mask
before feeding it into the boundary correction module. The detailed
algorithm description of the boundary perturbation operations is shown
in Algorithm 1.

The prediction mask itself contains high-level segmentation infor-
mation. So we construct a lightweight network that pays more attention
to extracting detailed features of the object boundary from the RGB
input. The proposed boundary correction module is incorporated into
an end-to-end segmentation architecture without using cascade struc-
tures, leading it to be more lightweight and efficient. The detail of the
boundary correction module is illustrated at the right of Fig. 2.

3.5. Network training

Network architecture. As shown in Fig. 2, we choose ResNet-18 as
the backbone of the centroid map prediction module and the boundary
correction module. For the first stage, even a coarse centroid map
can provide a certain number of accurate foreground and background
pixels. Meanwhile, a high-level segmentation mask is incorporated
into the input channel in the third stage. So a lightweight network
is a reasonable choice taking both effectiveness and efficiency into
consideration. While in the segmentation prediction module, we adopt
ResNet-101 as the feature extraction backbone for more robust feature
representation following IOG (Zhang et al., 2020) and DEXTR (Maninis
et al., 2018).

For the boundary correction module, it should be noted that the
gradient blocking strategy is applied to the segmentation input with
perturbations. As shown in Fig. 2, this operation can prevent the gra-
dient back-propagation from disturbing the previous segmentation net-
work training, and enable the third stage to focus on rough boundary
correction.

Cascaded Pyramid Network (CPN). We also employ a Cascaded
Pyramid Network (CPN) (Chen et al., 2018a; Zhang et al., 2020) fol-
lowing each stage’s corresponding backbone. The architecture of CPN is
shown in the right-bottom of Fig. 2, and the details of the coarse-to-fine
structure are introduced as follows. Four feature maps are generated
from conv2 ∼ conv5 block. The Pyramid Pooling Module (PPM) (Zhao
et al., 2017) enriches the conv5 feature map by fusing features of four
different pyramid scales. Then the first subnetwork (GlobalNet) encodes
the segmentation feature with high-resolution details. Finally, the sec-
ond subnetwork (RefineNet) integrates the abundant information on
different scales by upsampling and concatenation.

Input. The input channels of the three modules are different. In
the first stage, only RGB image (3 channels) and the gray-scale map of
one specific user guidance (1 channel for bounding box, 2 channels for
inside-outside points, or 1 channel for extreme points) are available,
which are concatenated as the input of the centroid map prediction
module. Then the centroid map (1 channel) generated from the first
stage is concatenated with the input of the first stage, which can serve
as an additional input for the second stage. Ultimately, the coarse
segmentation result (1 channel) obtained from the second stage, the
RGB image, and the user guidance are concatenated as the input of the

final stage.
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Loss. We first introduce two basic loss functions adopted in our
training stage, i.e. cross entropy (CE) loss 𝐶𝐸 and intersection over
union (IoU) loss 𝐼𝑜𝑈 . The definitions are illustrated in formula (2) and
formula (3), respectively.

𝐶𝐸 = −(𝐺𝑙𝑜𝑔(𝑃 ) + (1 − 𝐺)𝑙𝑜𝑔(1 − 𝑃 )), (2)

𝐼𝑜𝑈 = 1 − 𝑃 ∩ 𝐺
𝑃 ∪ 𝐺

, (3)

here 𝐺 and 𝑃 denote the ground truth and prediction, correspond-
ngly.

Then we introduce the loss functions for each module. For the
oss 𝑐𝑒𝑛 of the centroid map prediction module, we adopt CE loss to
upervise the pixel-level regression:

𝑐𝑒𝑛 = 𝐶𝐸 . (4)

or the loss 𝑠𝑒𝑔 of the segmentation prediction module and 𝑏𝑜𝑢 of
the the boundary correction module, to better constrain the boundary
shape prediction, we further adopt a mixed loss:

𝑠𝑒𝑔 = 𝑏𝑜𝑢 =
3
∑

𝑖=1

5
∑

𝑗=1
𝑖,𝑗
𝐶𝐸 + 𝜆𝑖,𝑗

𝐼𝑜𝑈 , (5)

where 𝑖 and 𝑗 refer to specific stage-index and layer of the GlobalNet
and RefineNet (Zhang et al., 2020), respectively. The hyper-parameter
𝜆 balances the two losses.

Finally, we introduce the training strategy for the entire network.
All three modules of the entire network are trained simultaneously, and
the total loss 𝑡𝑜𝑡𝑎𝑙 can be calculated as follows:

𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝑐𝑒𝑛 + 𝜆2𝑠𝑒𝑔 , (6)

where 𝜆1 and 𝜆2 are the weights of the centroid map prediction module
nd the segmentation prediction module, respectively. The two mod-
les are optimized by the total loss. Since the gradient of the boundary
orrection module is blocked during the training stage, it is optimized
y its own mixed loss 𝑏𝑜𝑢, separately.

. Experiments

.1. Datasets and evaluation protocols

Datasets. Our method is evaluated by two public datasets:
paceNet-Vegas (Van Etten et al., 2018) and Inria-building dataset
Maggiori et al., 2017). Specifically, the SpaceNet building dataset is
rocessed into instance-level and we select the samples of Las Vegas
ollowing Li et al. (2023). The dataset comprises 3851 images and
pproximately 1,080,000 instances of buildings. These are randomly
plit into 3081 images for training, 385 for validation, and another
85 for testing purposes following Li et al. (2023). The Inria-building
ataset is cropped based on single-building object in the center of the
mage, and sampled from Inria Aerial Image Labeling Dataset (Maggiori
t al., 2017) following Xu et al. (2022). The dataset contains 18,952
uilding images, which are split into train/val/test sets with a ratio of
0%/20%/20% following Xu et al. (2022).
Evaluation protocols. We report our performance with three main

etrics: IoU, Boundary F-score (Perazzi et al., 2016) and Boundary
oU (Cheng et al., 2021). Existing interactive methods mainly focus
n IoU with less consideration of boundary pixels. In contrast, we in-
roduce two additional metrics to evaluate the boundary segmentation
uality of our method. In addition, to conduct a fair comparison with
ther methods on the Inria-building dataset, we also introduce the
5

eighted Coverage (WCov) and Dice metrics following Xu et al. (2022). p
4.2. Implementation details

Pre-annotation simulation. In the training and testing stage of the
odel, we generate the user guidance from the ground truth mask by
ser simulation following the same way as previous interactive seg-
entation studies (Xu et al., 2017; Papadopoulos et al., 2017; Maninis

t al., 2018; Zhang et al., 2020). The three types of user guidance are
enerated as follows:

• For the bounding box, we first generate a precise bounding box
from the ground truth mask by acquiring the top, bottom, left,
and right coordinates. Then we relax the box with 10 pixels to
simulate human behavior, so that the user do not have to conduct
very precise interaction to get accurate prediction.

• For the inside-outside points, we generate the outside points from
the top-left and bottom-right points of the simulated bounding
box obtained above, and we sample the inside points from the
center of the ground truth mask. To simulate human behavior,
the inside points are randomly perturbed with [0, 5] pixels within
the mask.

• For the extreme points, we first get the precise top-most, bottom-
most, left-most, and right-most points of the ground truth mask,
and then we perturb the four points with a random pixel of [0,
5] to simulate human behavior.

Training and Testing details. We use the ImageNet (Russakovsky
t al., 2015) pre-trained ResNet (He et al., 2016) as the backbone.
or the sake of better refinement capability, we perturb the output of
he segmentation prediction module by modifying its boundary pixels
andomly (Cheng et al., 2020). Our model is trained for 100 epochs
n SpaceNet-Vegas and the Inria-building datasets, with SGD as the
ptimizer, a learning rate of 2.5 × 𝑒−3, a momentum of 0.9, a weight
ecay of 5 × 𝑒−4, and the poly policy adopted. We set the hyper-
arameter 𝜆 for balancing the two losses as 0.4, and 1 for both 𝜆1 and
2. The model is trained on 2 NVIDIA Tesla V100, with a batch size
f 24 for SpaceNet-Vegas and 64 for the Inria-building datasets. The
oU target is set as 0.9 for boundary perturbation in the training stage,
hile it is omitted in the testing stage.

.3. Comparison with state-of-the-art methods

First, to evaluate the performance of our method, we compare
t with the state-of-the-art interactive segmentation methods on the
paceNet-Vegas building dataset. We evaluate the performance of these
ethods using their released code. For Polygon-RNN++ (Acuna et al.,
018), previous studies (Li et al., 2023) proved that the evaluator
dopting beam search strategy can improve the prediction results, and
he strategies of reinforcement learning and upscaling with a GGNN can
eteriorate the building segmentation performance. Thus we apply the
valuator module and remove the latter two strategies for the Polygon-
NN++ method. For Curve-GCN (Ling et al., 2019), since the buildings
re polygon-type objects, we select the Polygon-GCN model rather than
pline-GCN model. Taking the real distribution of vertex numbers into
onsideration, its total number is set as 20. In addition, we employ
he point matching loss (with 𝐾 set to 1280 following (Ling et al.,
019)) since it achieves superior performance when compared to the
ifferentiable accuracy loss in our specific task.

For the interactive methods with other types of pre-annotations, we
se the default setting of DEXTR (Maninis et al., 2018) and IOG (Zhang
t al., 2020) (i.e., extreme points for DEXTR, inside-outside points for
OG). Considering the fairness of the comparison, we set the number
f clicks as 5 and use the backbone of HRNet-32 for FocalClick (Chen
t al., 2022).

Furthermore, to fairly evaluate the gain of our method that comes
rom not only pre-annotations but also architecture designs, we com-

are the proposed method with the state-of-the-art ACM-based models
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Fig. 3. Visual comparison on the SpaceNet-Vegas dataset. The seg and error are the abbreviations of the segmentation result and error map, respectively. For the last three columns,
the red region denotes False Positive (FP), while the blue region denotes False Negative (FN). Results show that our method produces more accurate results with more precise
boundaries compared with other methods.
Table 1
Comparison with the state-of-the-art methods on SpaceNet-Vegas dataset. All the metrics
are scaled by 102.

Methods Pre-annotation IoU BF-score BIoU

Polygon-RNN++ (Acuna et al., 2018) Bounding Box 86.1 67.2 26.6
Polygon-GCN (Ling et al., 2019) Bounding Box 88.7 73.1 30.1
DEXTR (Maninis et al., 2018) Extreme Points 94.9 85.6 45.6
IOG (Zhang et al., 2020) Inside-outside Points 95.0 85.4 45.3
FocalClick (Chen et al., 2022) Iterative Clicks 95.1 84.7 43.2

Ours
Bounding Box 94.0 81.6 42.1
Extreme Points 95.8 87.6 53.4
Inside-outside Points 95.8 88.4 51.0

Table 2
Comparison with the state-of-the-art methods on the Inria-building dataset. All the
metrics are scaled by 102.

Methods Pre-annotation IoU WCov BF-score Dice

DSAC (Marcos et al., 2018) Bounding Box 35.1 37.8 5.9 51.2
DARNet (Cheng et al., 2019) Bounding Box 65.8 60.5 33.0 77.2
CVNet (Xu et al., 2022) Bounding Box 77.6 75.6 42.2 86.7
DEXTR (Maninis et al., 2018) Extreme Points 92.4 92.4 84.3 96.0
IOG (Zhang et al., 2020) Inside-outside Points 92.2 92.3 84.0 95.9
FocalClick (Chen et al., 2022) Iterative Clicks 88.0 88.4 64.5 93.6

Ours
Bounding Box 92.1 92.2 84.3 95.9
Extreme Points 93.1 93.1 86.9 96.4
Inside-outside Points 92.8 92.9 86.0 96.3

designed for single building extraction (i.e., DSAC (Marcos et al., 2018),
DARNet (Cheng et al., 2019), and CVNet (Xu et al., 2022)), using the
default experimental settings of these methods on the Inria-building
dataset.

Table 1 provides the comparison of different methods on SpaceNet-
Vegas dataset. Our method achieves the best performance on all met-
rics, demonstrating a significant improvement on boundary metrics.
Since the IoU of the SpaceNet-Vegas building dataset is already higher
than 95%, the BF-score and BIoU metrics (related to boundary region)
are more sensitive to reflect the segmentation performance. Moreover,
compared with recently proposed interactive segmentation methods
(i.e., DEXTR (Maninis et al., 2018), IOG (Zhang et al., 2020) and
FocalClick (Chen et al., 2022)), our method gains the state-of-the-art
6

results using extreme points and inside-outside points. Even with only
bounding box pre-annotation, our method demonstrates competitive
performance and significantly improves the performance compared
with Polygon-RNN++ (Acuna et al., 2018) and Polygon-GCN (Ling
et al., 2019).

Table 2 shows the comparison of different methods on Inria-building
dataset. Our method achieves significant improvement compared with
previous methods on all metrics. For the methods with only bounding
box provided, our method demonstrates a huge performance improve-
ment (14.5% for IoU, 16.6% for WCov, 42.1% for BF-score and 9.2%
for Dice) compared with previous state-of-the-art (i.e., CVNet (Xu et al.,
2022)). For the methods with other pre-annotation types, our method
makes obvious improvement with both extreme points and inside-
outside points compared with DEXTR and IOG, especially for boundary
metrics (2.6% improvement for DEXTR and 2.0% improvement for
IOG). Figs. 3 and 4 illustrate some qualitative results of SpaceNet-Vegas
and Inria datasets. Results demonstrate that our method significantly
improves the building extraction results compared with the previous
state-of-the-art methods, achieving more accurate building boundaries
with much fewer error regions.

4.4. Ablation study

In our ablation study, we first perform an extensive experiment
to explore how the pre-annotation type can affect the prediction per-
formance. Then we evaluate the effectiveness of each module of the
proposed method.

Backbone ablation. To prove the effectiveness of the DeepLabV3-
based CPN backbone, we make a comparison with other common
backbones for segmentation, i.e. U-Net (Ronneberger et al., 2015),
HRNet (Wang et al., 2020) and SegFormer (Xie et al., 2021). The
additional three backbones are substituted in our framework with a
suitable size combination. The U-Net backbone adopts the normal size
of its paper (Ronneberger et al., 2015) for the segmentation prediction
module, and 1

2 size for the centroid map prediction and boundary
correction module. The HRNet backbone adopts HRNet-w32 for the
segmentation prediction module, and HRNet-w18 for the centroid map
prediction and boundary correction module. The SegFormer backbone
adopts SegFormer-B3 for the segmentation prediction module, and
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Fig. 4. Visual comparison on the Inria-building dataset. The seg and error are the abbreviations of the segmentation result and error map, respectively. For the last three columns,
and the red region denotes False Positive (FP), while the blue region denotes False Negative (FN).
Table 3
Backbone ablation on the SpaceNet-Vegas dataset. All the methods utilize inside-outside
points as user guidance, and set the same batch size on the same device. The size of
the model and GPU memory usage is measured in megabytes (MB).

Backbones Params Memory usage IoU BF-score BIoU

U-Net (Ronneberger et al., 2015) 32.0 2021.5 91.2 81.3 47.3
HRNet (Wang et al., 2020) 48.8 2564.2 94.9 84.7 50.1
SegFormer (Xie et al., 2021) 54.7 2431.4 95.2 87.4 53.1
CPN (Zhang et al., 2020) 79.4 2315.2 95.8 87.6 53.4

Table 4
Distance metric ablation of the centroid prediction module on the
SpaceNet-Vegas dataset. All the methods utilize inside-outside points as
user guidance.
Distance functions IoU BF-score BIoU

Taxicab 95.6 87.2 52.9
Chessboard 95.5 87.0 53.1
Euclidean 95.8 87.6 53.4

SegFormer-B0 for the centroid map prediction and boundary correction
module.

Meanwhile, the number of parameters cannot accurately demon-
strate the overhead of training and inference of the models since it
does not consider the H and W dimension of activation maps, and
the FLOPs calculated by current tools are not accurate enough for ViT
architecture. Thus we set the same batch size 24 for all four backbones
on the same devices (2 NVIDIA Tesla V100, 32 GB) and calculate
the GPU memory usage per device for a fair comparison. As shown
in Table 3, the DeepLabV3-based CPN achieves the best performance
under all the segmentation metrics and handles an efficient GPU over-
head. Although our backbone has the largest number of parameters,
it is still a computation-efficient architecture. As mentioned before,
CPN adopts an encoder–decoder architecture with multi-level feature
fusion and skip connection, which is not a direct encoder architecture
of DeepLabV3. Most activation maps are processed under lower reso-
lution, leading to better prediction for low-level edge information and
high-level body information with less computation cost.

Distance function ablation. The centroid map is dedicated to
reflecting the probability of the foreground region under 2D Euclidean
7

space. We conduct the distance function ablation experiments to com-
pare the three common measurements (i.e. taxicab distance, chess-
board distance, and Euclidean distance). Suppose there are two points
𝐴(𝑥1, 𝑦1), 𝐵(𝑥2, 𝑦2), the three distance function can be formulated as
follows:

𝐷𝑡𝑎𝑥𝑖𝑐𝑎𝑏 = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|, (7)

𝐷𝑐ℎ𝑒𝑠𝑠𝑏𝑜𝑎𝑟𝑑 = max(|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|), (8)

𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =
√

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. (9)

As shown in Table 4, the Euclidean distance is more suitable for
the measure of point-to-edge distance directly, which outperforms the
other two measurements in terms of all evaluation metrics.

Pre-annotation ablation. As illustrated in Table 5, we perform the
pre-annotation ablation experiments on SpaceNet-Vegas dataset, and
the qualitative comparison results are illustrated in Fig. 5. Among the
three types of pre-annotations, the bounding box provides the least
foreground/background priors since the samples are instance-level and
this type only provides clicks on background pixels, which leads to the
worst performance compared with the other two types. It is suitable for
rectangular buildings without hollows, as bounding box take the least
human labor with 2 clicks and can acquire a precise result. The 2nd row
of Fig. 5 is a similar example. The extreme points type achieves the best
quantitative performance on average, which includes most priors since
each click provides both foreground and background information. As
illustrated in the 1st/2nd/4th rows of Fig. 5, the features of extreme
points make it suitable for most regular polygon buildings with simple
and prominent shapes, even overlapped by trees or shadows. However,
as shown in the last two rows of Fig. 5, the extreme points type
fails for some building samples with concave or hollow shapes. On
the contrary, as shown in the 3rd/5th/6th rows, the inside-outside
points alleviates the above weakness via providing an inside click. In
conclusion, the choice of pre-annotations depends on different actual
cases, and our proposed method is flexible for user guidance, making
it more convenient in practical data annotation compared with other
methods. For most cases without hollows, the extreme points type is
better in terms of the qualitative results. The choice of bounding box
and extreme points should consider a trade-off between efficiency and
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Table 5
Ablation study on SpaceNet-Vegas dataset. Module 1/2/3 represents centroid map prediction, segmentation prediction, and boundary correction, respectively. Our method can
handle all three types of pre-annotation to achieve the best result.

Module Bounding box Inside-outside points Extreme points

1 2 3 IoU(%) BF-score(%) BIoU(%) IoU(%) BF-score(%) BIoU(%) IoU(%) BF-score(%) BIoU(%)

✓ 93.7 80.3 41.3 95.2 85.4 47.4 95.1 86.3 47.5
✓ ✓ 93.8 80.9 41.5 95.4 86.7 51.8 95.3 87.8 49.6

✓ ✓ 93.8 81.2 41.9 95.5 86.7 49.6 95.5 88.0 50.1
✓ ✓ ✓ 94.0 81.6 42.1 95.8 87.6 53.4 95.8 88.4 51.0
Table 6
Comparison with IOG on different pre-annotations, BF is the abbreviation of BF-score, and all the metrics are scaled by 102.

Interactive Methods Vegas Inria

IoU BF BIoU IoU BF BIoU

Bounding
box

IOG (Zhang et al., 2020) 93.7 80.3 41.3 91.4 82.1 41.9
ours 94.0 81.6 42.1 92.1 84.3 44.5

Inside-outside
points

IOG 95.2 85.4 47.4 92.3 84.0 43.7
ours 95.8 87.6 53.4 92.8 86.0 45.9

Extreme
points

IOG 95.1 86.3 47.5 92.7 85.3 44.7
ours 95.6 88.4 51.0 93.1 87.0 47.0
F
T
t

T
B
i

f

ig. 5. Comparison of the building extraction results obtained from different
re-annotation types on the SpaceNet-Vegas and the Inria-building dataset.

recision sample-by-sample. For the situations that need more inside
rior, the inside-outside points type is a more suitable choice.

We further make a comprehensive comparison between our method
nd IOG using three types of pre-annotations, as illustrated in Ta-
le 6. We can find that our method outperforms IOG under every type
f pre-annotations, with over 2.0% boundary metrics improvements.
oreover, on the Inria-building dataset, the boundary F-score and

oundary IoU of our method with bounding box are 84.3% and 44.5%,
espectively, which are even higher than IOG with both inside and
utside points input (84.0% and 43.7%). In other words, our method
chieves better boundary prediction with simpler pre-annotation.
s shown in Fig. 4, compared to IOG, our method achieves significant
erformance gains on the segmentation boundary.
8

i

ig. 6. Visualization of each sub-module of our method. The 1𝑠𝑡∕ column shows the GT.
he 2nd/3rd/4th column shows the result from the centroid map prediction module,
he segmentation prediction module, and the boundary correction module, respectively.

able 7
oundary perturbation ablation on the SpaceNet-Vegas dataset. All the methods utilize

nside-outside points as user guidance.
Mask perturbation IoU(%) BF-score(%) BIoU(%)

– 95.5 86.9 51.2
✓ 95.8 87.6 53.4

Module ablation. To understand how each stage of our method
acilitates the segmentation performance, we evaluate each module
ndependently. As illustrated in Table 5, the results indicate that both
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Table 8
Module effectiveness validation on the SpaceNet-Vegas dataset. All the methods utilize inside-outside points interactive input. R is the
abbreviation of ResNet, and the size of the model is measured in megabytes (MB).
Module Backbone Params IoU(%) BF-score(%) BIoU(%)
1 2 3

✓ R-101 52.1 95.2 85.4 47.4
✓ ✓ R-18+50 46.8 95.6 86.3 51.2

✓ ✓ R-50+18 46.8 95.6 85.9 49.9
Table 9
Optimization strategy ablation on the SpaceNet-Vegas dataset. All the methods utilize inside-outside points as interactive input. Module 1/2/3 represents
centroid map prediction, segmentation prediction, and boundary correction, respectively.
Simultaneously optimized module Gradient

blocking Total epochs IoU(%) BF-score(%) BIoU(%)
Module1 Module2 Module3

220 95.4 87.1 52.8
✓ ✓ 160 95.9 87.6 53.2

✓ ✓ 160 94.8 86.5 51.9
✓ ✓ ✓ 100 95.2 86.9 52.4
✓ ✓ ✓ 100 95.8 87.6 53.4
centroid map prediction module and boundary correction module can
benefit segmentation individually, and the combination of all modules
can achieve the best performance, which indicates the three modules
mutually benefit the segmentation performance. Furthermore, we con-
duct additional ablation studies to verify the effectiveness of the seg-
mentation perturbation strategy, and the result is shown in Table 7. We
also validate the performance gain is due to the module design instead
of the deepening of the network architecture. As shown in Table 8,
the backbone of the centroid map prediction module and boundary
correction module is ResNet-18, while we use ResNet-50 for module 2.
We also show the results of module 2-only with ResNet-101 backbone
for reference. Results show that both the two combinations (i.e., module
1 & 2, module 2 & 3) outperform module 2-only with ResNet-101,
which demonstrates that the proposed method can achieve better seg-
mentation performance with simpler architecture. Fig. 6 visualizes
some samples to intuitively show the procedures of our method. With
the enhancement of each module, the segmentation predictions are
gradually improved.

Training strategy ablation. To validate our training strategy for
the three modules-based network, we do an optimization ablation
study. In experiments, we train the centroid map prediction module and
the boundary correction module for 60 epochs, and the segmentation
prediction for 100 epochs to get convergence results. The results are
shown in Table 9, from which we can conclude that:

• The centroid map prediction module should be optimized with
the segmentation prediction module to get the best performance
since the foreground prior is directly used for foreground mask
prediction.

• The function of the boundary correction module is independent of
the main segmentation task, it is dedicated to refining any coarse
boundary.

Considering the trade-off between segmentation performance and
training cost, we finally select the gradient-blocking strategy for the
boundary correction module, so that all modules can be trained simul-
taneously within 100 epochs and get the approximate best results.

4.5. Cross-domain evaluation

To further demonstrate the advantages of our method in practi-
cal application scenarios, we compare it with DEXTR and IOG for
cross-domain experiments.

Generalization on distribution-similar scenarios. For the gen-
eralization evaluation, we chose the SpaceNet-Vegas and the Inria-
building dataset. As illustrated in the 2nd and 3rd rows of Table 10, our
method outperforms DEXTR and IOG with more than 3% improvement
9

Fig. 7. Qualitative results of the cross-domain evaluation. Our model is trained on
ADE20K training set, and tested on the test set of the SpaceNet-Vegas and the
Inria-building datasets.

on boundary metrics, which demonstrates that our method has better
class-agnostic and generalization ability compared with DEXTR and
IOG.

Cross-domain on different scenarios. To explore the capability of
each method for generalization from general vision to remote sensing
scenarios, we choose the SpaceNet-Vegas, the Inria-building dataset,
PASCAL (Everingham et al., 2010) and ADE20K (Zhou et al., 2017) for
the cross-domain experiments. The 5th–8th rows of Table 10 and Fig. 7
show the quantitative and qualitative results of the cross-domain exper-
iments on different scenarios. We can find that our method outperforms
DEXTR and IOG on natural to remote sensing scenario on all metrics.
The competitive performance of our method (with an IoU of over 80%)
also vindicates that training on natural images is capable enough for the
building extraction tasks on remote sensing images, which prospects
a new application of leveraging the large-scale well-annotated general
vision datasets to facilitate the annotation process of remote sensing
images.

The cross-domain performance in distribution-similar and different
scenarios verifies the potential of our method to facilitate efficient
annotation in real-world scenarios.

4.6. Limitation analysis

To comprehensively demonstrate the performance of our method,
we analyze some representative failure cases on the SpaceNet-Vegas
and the Inria-building dataset.

Dataset mismatch annotation. As shown in Fig. 5, there are
indeed some mismatch annotations in the SpaceNet-Vegas and the
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Table 10
Comparison with DEXTR and IOG in terms of the cross-domain ability. All the metrics (IoU, BF and BIoU) are scaled by 102.

Train Test DEXTR IOG Ours

IoU BF-score BIoU IoU BF-score BIoU IoU BF-score BIoU

Vegas Vegas 94.9 85.6 45.6 95.0 85.4 45.3 95.4 86.3 49.4
Inria 88.4 76.3 37.1 87.9 75.5 35.9 89.8 78.5 38.7

Inria Vegas 73.9 26.8 9.7 73.7 25.7 8.4 74.5 28.7 11.2
Inria 92.4 84.3 43.7 92.2 84.0 42.7 93.1 86.9 47.0

PASCAL Vegas 77.5 45.2 15.7 79.6 47.6 16.9 82.4 49.6 18.7
Inria 77.6 63.4 25.5 80.3 65.3 27.8 83.8 67.2 30.6

ADE20K Vegas 78.8 49.9 15.2 82.1 51.0 16.2 86.6 53.0 18.0
Inria 79.5 68.4 29.8 81.3 69.6 30.1 85.4 71.2 32.1
Fig. 8. Failure cases of our method on the SpaceNet-Vegas and the Inria-building
dataset. The red region denotes False Positive (FP), while the blue region denotes
False Negative (FN).

Inria-building datasets, which is hard to avoid in existing public build-
ing segmentation datasets. Nevertheless, our interactive segmentation-
based method can somewhat solve this complex case. On the one
hand, as shown in Fig. 1, all three pre-annotation types (i.e. bounding
box, inside-outside points, and extreme points) provide background
prior by clicks, from which we generate a soft bounding box with a
20-pixel relax to crop the image before feeding to the network, and
this relax improves the robustness of the network for slight mismatch
annotations. On the other hand, the foreground and background user
guidance is converted into a gray-scale map and concatenated with the
cropped image, and our prior-based training enables the network to
distinguish the target building more precisely.

Error-prone scenarios. In Fig. 8, we show some error-prone failure
cases. There are three main aspects for the poor prediction results of
these images. As shown in the first two rows of Fig. 8, the first aspect
is the low resolution due to the resizing of each instance, resulting in
difficulties for the model to identify semantic information. The second
10
aspect is the confusion between foreground and background. As shown
in the fourth and fifth rows, the foreground (building) overlaps with the
background (trees and shadows) or has a similar color and texture to
the background, resulting in poor segmentation performance. The last
aspect is the limitation of click pre-annotation type. As shown in the
third and last rows, if the buildings are long and narrow, the boundary
prior could not be inferred by several clicks. In such cases, the scribble-
like pre-annotation types can better handle this situation. In general,
the interactive segmentation is a pixel-level binary classification prob-
lem of foreground and background, and the poor result is caused by
the unclear boundary due to the image semantic factors and unsuitable
pre-annotation priors.

5. Conclusion

In this work, we proposed an end-to-end interactive network to im-
prove the accuracy and quality of building segmentation from remote
sensing images, which further facilitates the efficient pixel-wise annota-
tion of building extraction datasets. The innovation of the method lies
in providing important prior information with the centroid map, as well
as combining the disturbance labeling and segmentation prediction to
correct the boundary. Moreover, our method supports multiple types
of pre-annotations by user guidance (bounding boxes, inside-outside
points, and extreme points), and it can be easily updated if new
segmentation structures are used. Finally, quantitative and qualitative
experiments verify that our method can achieve start-of-the-art per-
formance on all evaluation metrics for the building extraction task.
The extensive ablation study also validates the effectiveness of each
pre-annotation type and network module in our proposed method.
We believe that our method has significant potential and application
values for improving the time-consuming annotation process of remote
sensing datasets. The generalization of image domain and user guidance
are two remaining challenges for the interactive segmentation-based
building extraction task. In our future work, we will improve our
method in more complex scenarios with more types of user guidance.
We also plan to extend our method to other applications in remote
sensing domain.
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