
Influence Selection for Active Learning

Zhuoming Liu*†1, Hao Ding*†2, Huaping Zhong3, Weijia Li‡3,4, Jifeng Dai3, and Conghui He3

1University Southern California
2Johns Hopkins University

3SenseTime Research
4CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong

liuzhuom@usc.edu, hding15@jhu.edu, wjli@ie.cuhk.edu.hk

Abstract

The existing active learning methods select the samples
by evaluating the sample’s uncertainty or its effect on the
diversity of labeled datasets based on different task-specific
or model-specific criteria. In this paper, we propose the In-
fluence Selection for Active Learning(ISAL) which selects
the unlabeled samples that can provide the most positive
Influence on model performance. To obtain the Influence
of the unlabeled sample in the active learning scenario, we
design the Untrained Unlabeled sample Influence Calcu-
lation(UUIC) to estimate the unlabeled sample’s expected
gradient with which we calculate its Influence. To prove
the effectiveness of UUIC, we provide both theoretical and
experimental analyses. Since the UUIC just depends on
the model gradients, which can be obtained easily from
any neural network, our active learning algorithm is task-
agnostic and model-agnostic. ISAL achieves state-of-the-
art performance in different active learning settings for dif-
ferent tasks with different datasets. Compared with previous
methods, our method decreases the annotation cost at least
by 12%, 13% and 16% on CIFAR10, VOC2012 and COCO,
respectively.

1. Introduction
Active learning is a kind of sampling algorithm that

aims to reduce the annotation cost by helping the model
to achieve better performance with fewer labeled training
samples. In those areas with a limited annotation budget or
the areas that need large amounts of labeled samples, active
learning plays an important and irreplaceable role. How-
ever, unlike the rapid progress of weakly supervised learn-
ing and semi-supervised learning, the development of active
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Figure 1: Using UUIC to calculate the influence of unla-
beled samples. These two samples will be annotated as
’Bird’ if they are selected. In UUIC, we calculate the in-
fluence of the sample by calculating −∇θl(R, θ̂)TH−1

θ̂
Gzi .

The more negative the influence value is, the more positive
influence on model performance the sample provides. Base
on the result from UUIC, our ISAL algorithm selects the
sample z1 for annotation.

learning is limited. Especially in the computer vision area,
most of the existing active learning algorithms are restricted
to the image classification problem.

Given a pool of unlabeled images, different active
learning algorithms evaluate the importance of each im-
age with different criteria, which can be divided into
uncertainty-based methods and diversity-based methods.
The uncertainty-based methods [19, 14, 34, 8, 40] use
different criteria to evaluate the uncertainty of an image
and select the images that the trained model is less con-
fident about. However, the neural network shows over-
confidence [13] toward the unfamiliar samples, indicating
that using the uncertainty to estimate the samples’ impor-
tance may not be accurate, deteriorating the performance of
the active learning algorithm.

The diversity-based methods [24, 39, 10, 31] aim to se-
lect a subset from the whole unlabeled dataset with the



largest diversity. These methods do not consider the model
state. Besides, some of them need to measure the distance
between each labeled image and each unlabeled image,
meaning that their computation complexity are quadratic
with respect to the size of the dataset. This disadvantage
will become more apparent on the large-scale dataset.

In addition to image classification, object detection is
also an important area that has large amounts of applica-
tions. The annotation for the datasets [20, 35, 6] of object
detection is extremely time-consuming. Thus, active learn-
ing for object detection is well demanded. However, the re-
search in active learning for object detection [30, 15, 4, 11]
is rare and most of the proposed methods are designed for
specific architecture, e.g., Faster R-CNN [27] or SSD [21].

In this paper, instead of designing a task or even
architecture-specific algorithms, we propose an algorithm
that can be generally applied to different tasks and archi-
tectures. There are already some successful attempts like
the diversity-based coreset [31] and the uncertainty-based
learning loss [40] algorithm, which proves that the general
algorithm for active learning is possible. Unlike these two
algorithms that select samples by measuring the feature dis-
tance or the expected loss which are assumed to be corre-
lated with the potential influence on the model, our method
estimates the samples’ influence directly.

Our method, Influence Selection for Active Learn-
ing(ISAL), selects samples with the most positive influ-
ence, i.e. the model performance will be enhanced most
by adding this sample with full annotation into the labeled
dataset. The influence measurement was first proposed by
Cook [3] for robust statistics. However, the scenario for
the influence estimation in our work is entirely different.
In our case, the samples are unlabeled and untrained. We
design the Untrained Unlabeled sample Influence Calcula-
tion(UUIC) to calculate the influence of the unlabeled and
untrained sample by estimating its expected gradient. Fig-
ure. 1 shows how UUIC evaluates unlabeled samples and
helps ISAL select samples. Since UUIC just needs to use
the model gradients, which can be easily obtained in a neu-
ral network no matter what task is and how complex the
model structure is, our proposed ISAL is task-agnostic and
model-agnostic.

ISAL achieves state-of-the-art performance among all
comparing active learning algorithms for both the image
classification and object detection task in the commonly
used active learning setting with different representative
datasets. Our method saves 12%, 13%, 16% annota-
tion than the best comparing methods in CIFAR10 [17],
VOC2012 [6] and COCO [20], respectively. In addition, the
existing methods for object detection perform better than
random sampling only when the trained model’s perfor-
mance is far lower than the ones trained on the full dataset,
indicating that some selected samples may not be the best

choice. Thus, we apply ISAL to a large-scale active learning
setting for object detection. ISAL decreases the annotation
cost at least by 8% than all comparing methods when the
detector reaches 94.4% performance of the model trained
on the full COCO dataset.

The contribution of this paper is summarized as follows:

1. We propose Influence Selection for Active Learn-
ing(ISAL), a task-agnostic and model-agnostic active
learning algorithm, which selects samples based on the
calculated influence.

2. We design the Untrained Unlabeled sample Influence
Calculation(UUIC), a method to calculate the influ-
ence of the unlabeled and untrained sample by estimat-
ing its expected gradient. To validate UUIC’s effec-
tiveness, we provide both theoretical and experimental
analyses.

3. ISAL achieves state-of-the-art performance in differ-
ent experiment settings for both image classification
and object detection.

2. Related Work
The existing active learning methods [26] can be divided

into two categories: uncertainty-based and diversity-based
methods. Many of them are designed for image classifica-
tion or can be used in classification without much change.

Uncertainty-based Methods. The uncertainty has been
widely used in active learning to estimate samples’ im-
portance. It can be defined as the posterior probabil-
ity of a predicted class [19, 18, 38], the posterior prob-
ability margin between the first and the second predicted
class [14, 29], or the entropy of the posterior probability
distribution [32, 14, 22, 33]. In addition to directly using
the posterior probability, researchers design some differ-
ent methods for evaluating the samples’ uncertainty. Se-
ung [34] trains multiple models to construct a committee
and measures uncertainty by the consensus between the
multiple predictions from the committee. Gal [8] proposes
an active learning method that obtains uncertainty estima-
tion through multiple forward passes with Monte Carlo
Dropout. Yoo [40] creates a module that learns how to
predict the unlabeled images’ loss and chooses the unla-
beled image with the highest predicted loss. Freytag [7]
selects the images with the biggest expected model output
changes, which can be also regarded as the uncertainty-
based method.

Diversity-based Method. It aims to solve the sampling
bias problem in batch querying. To achieve this goal, a clus-
tering algorithm is applied [24] or a discrete optimization
problem [39, 5, 9] is solved. The core-set approach [31]
attempts to solve this problem by constructing a core sub-
set. In addition to using k-Center-Greedy to calculate the



core subset, its performance can be further enhanced by
solving a mixed-integer program. The context-aware meth-
ods [10, 23] consider the distance between the samples and
their surrounding points to enrich the diversity of the la-
beled dataset. Sinha [36] trains a variational autoencoder
and an adversarial network to discriminate between unla-
beled and labeled samples, which can also be regarded as a
diversity-based method.

Active Learning for Object Detection. The research in
active learning for object detection is rare and most of the
existing methods need complicated design. Roy [30] selects
the images with the biggest offset between the bounding
boxes(bboxes) predicted in intermediate layers and the last
layer of the SSD [21] model. Kao [15] proposes to use the
intersection over union(IoU) between the bboxes predicted
by the Region Proposal Network(RPN) head and Region of
Interest(RoI) head of Faster R-CNN [27] to measure the im-
age uncertainty, or measuring the uncertainty of an image
by the change of the predicted bboxes under different lev-
els of data augmentation, and chooses the images with the
highest uncertainty. Desai [4] measures the bbox-level un-
certainty and proposes a new method that chooses bboxes
for active learning instead of images. Haussmann [11] ex-
amines different existing methods in the scenario of large-
scale active learning for object detection. He finds that the
method which achieves the best performance chooses the
images with more bboxes, increasing the annotation cost
which is contradictory to the purpose of the active learn-
ing. In fact, most of the researches ignore that the annota-
tion cost of object detection is closely relative to the bboxes
number instead of the image number.

Influence Function. Cook [3] first introduces influence
function for robust statistics. The influence function evalu-
ates the importance of a trained sample by measuring how
the model parameters change as we upweight this sample by
an infinitesimal amount. Recently, Koh [16] uses the influ-
ence function to understand the neural network model be-
havior. Ren [28] evaluates the trained unlabeled sample in
semi-supervised learning by influence function. However,
as far as we know, none of the existing publications uses
the influence function on the untrained sample. Besides,
Cook’s derivation of influence function is also based on the
trained sample. Thus there is no solid theoretical support
for using the influence function on the untrained sample so
far.

3. Method
In this section, we start with the problem definition of

active learning. In Section 3.2, we provide a derivation for
evaluating the influence of an untrained sample. In Sec-
tion 3.3, we introduce Untrained Unlabeled sample Influ-
ence Calculation(UUIC) to estimate an untrained unlabeled
sample’s expected gradient with which we calculate the in-
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Figure 2: The pipeline of active learning. The iteration will
be repeated until the model achieves a satisfactory perfor-
mance or until we have exhausted the budget for annotation.

fluence of this sample. In Section 3.4, we show our pro-
posed Influence Selection for Active Learning algorithm.

3.1. Problem Definition

In this section, we formally define the problem of ac-
tive learning. We focus on some traditional computer vision
tasks such as image classification and object detection.

In real-world setting, we gather a large pool of unlabeled
samples U0. We randomly select a small amount of sam-
ples S0 from U0 and annotate them, the U1 = U0 \ S0.
The S0 will be split into two parts, the initial labeled sam-
ples L1, and the validation set V , which will be used to
measure the trained model performance. The L1 will be
used to train the first model M1 in active learning iteration.
Then all unlabeled samples in U1 will be evaluated accord-
ing to some specific criteria. In our proposed method, we
calculate the unlabeled sample’s influence on model perfor-
mance and use influence value as the criterion to evaluate
the importance of the untrained sample. Based on the eval-
uation result, a new group of unlabeled samples S1 will be
selected and annotated. The labeled and unlabeled dataset
will be updated, U2 = U1 \S1, and the L2 = L1∪S1. Then
L2 will be used to train another model M2, and U2 will be
evaluated and S2 will be selected. This iteration will be re-
peated until the model achieves a satisfactory performance
on V or until we have exhausted the budget for annotation.
Fig. 2 shows the pipeline of active learning.

3.2. The Influence of an Untrained Sample

In each step of the active learning, except the initial step,
we have an unlabeled dataset Ui and a labeled dataset Li.
With all the samples in Li = {z1, z2, · · · , zn} and loss
function L(θ) = 1

n

∑n
j=1l(zj , θ), we train a model with its

parameters θ ∈ Θ. The model would converge to θ̂ ∈ Θ,

where θ̂
def
= argmin θ∈Θ

1
n

∑n
j=1l(zj , θ).

Next, we need to evaluate each unlabeled sample and
select the most useful samples. We first measure the
model parameters change due to adding a new sample
z

′ ∈ Ui into the labeled dataset. We evaluate z
′

with



the assumption that we already have its ground truth la-
bel. The change of the parameter is θ̂z′ − θ̂, where θ̂z′ =
argmin θ∈Θ

1
n+1

∑
z′∪Li

l(z, θ). However, retraining the
model is time-consuming, and it’s impossible to retrain a
model for each unlabeled sample. Inspired by the motiva-
tion of the influence function [3], we can compute approxi-
mation of the parameter change by adding a small influence
from sample z

′
to the loss function L(θ), giving us new pa-

rameters θ̂ε,z′ = argmin θ∈Θ
1
n

∑n
j=1l(zj , θ) + εl(z

′
, θ).

Assuming that the loss function is twice-differentiable and
strictly convex in θ, the influence of sample z

′
on parameter

θ̂ is given by

I(z
′
) =

d θ̂ε,z′

d ε

∣∣∣∣∣
ε=0

= −H−1

θ̂
∇θl(z

′
, θ̂) (1)

where −H−1

θ̂
= 1

n

∑n
j=1 ∇2

θl(zj , θ̂) is the Hessian and is
positive definite by assumption. See the supplementary ma-
terial for the derivation in detail.

However, the model parameters change could not di-
rectly reflect the model performance change caused by the
sample z

′
. Thus, we randomly select and annotate a subset

of unlabeled dataset U0. This subset, named as reference set
R, can represent the distribution of U0. Next, we apply the
chain rule to evaluate the influence of sample z

′
on model

performance which is evaluated by the change of the model
loss on reference set R:

I(z
′
, R) =

d l(R, θ̂ε,z′ )

d ε

∣∣∣∣∣
ε=0

= ∇θl(R, θ̂)T
d θ̂ε,z′

d ε

∣∣∣∣∣
ε=0

= −∇θl(R, θ̂)TH−1

θ̂
∇θl(z

′
, θ̂)

(2)

The more negative I(z
′
, R) is, the more positive on model

performance influence z
′

can provide. In practice, we select
the validation set V created in the first step of active learn-
ing as reference set, since this would not cause additional
annotation. Our ablation study in Section 4.4.3 shows, it’s
possible for us to use the labeled dataset as R to calculate
the I(z

′
, R) in active learning, though using the validation

set as reference set will perform better.

3.3. Untrained Unlabeled sample Influence Calcu-
lation

In our active learning setting, we need to evaluate an
untrained sample z

′ ∈ Ui without the ground truth la-
bel. Therefore, we propose the Untrained Unlabeled sample
Influence Calculation(UUIC) to calculate the influence of
each sample in the unlabeled dataset. Our aim is to measure
the expected gradient Gz′ of sample z

′
and to replace the

∇θl(z
′
, θ̂) with Gz′ in equation 2 for influence calculation.

Algorithm 1 Untrained Unlabeled sample Influence Calcu-
lation

1: Input: stest, z
′

2: Forward the z
′

into model Mi

3: if Task is Image Classification then
4: Use the class with the highest posterior probability

as P
5: else if Task is Object Detection then
6: Filter the predicted bboxes with a given threshold
7: Select the remaining bboxes as P
8: else
9: Generate the pseudo-label P based on the task

10: end if
11: Calculate the loss Lz′ = l(z

′
, P, θ̂)

12: Back Propagate the Lz′ and get the Gz′

13: Return I(z
′
, R) = −stest ·Gz′

We first focus on the expected gradient in image classifi-
cation. The most intuitive design of the expected gradient is
to use the top K classes {label0, label1, · · · , labelK} in the
posterior probability as ground truth label to calculating the
loss. We backpropagate the losses to the model and obtain
the gradients with respect to class labeli. Then, we use the
posterior probability predi of class labeli as a weight to av-
erage the backpropagated gradients. The expected gradient
Gz′ is defined as

Gz′ =

K∑
i=1

∇θl(z, labeli, θ̂) · predi (3)

Our experiments in 4.4.1 shows that when K is equal to 1,
using the Gz′ to calculate the unlabeled sample influence
for active learning, our algorithm achieves the best perfor-
mance. This indicates that we can use the pseudo-label P
as ground truth label to calculate the gradient of sample z

′

as Gz′ in active learning. We further apply this simple but
effective way to calculate the Gz′ in object detection, it also
helps our active learning algorithm to achieve state-of-the-
art performance.

After obtaining the Gz′ , we replace the ∇θl(z
′
, θ̂) in

equation 2 with it. Thus the influence of untrained unla-
beled sample could be evaluated as

I(z
′
, R) = −∇θl(R, θ̂)TH−1

θ̂
Gz′ (4)

Since in equation 4 the Hessian matrix Hθ̂ is symmetric,
and ∇θl(R, θ̂) and Gz′ is a vector, the order of multipli-
cation would not matter. In practice, we do not calculate
the inverse matrix of the Hessian matrix. Instead we calcu-
late the stochastic estimation [1] of Hessian-vector products
stest = ∇θl(R, θ̂)H−1

θ̂
, which ensures that the computa-

tion complexity of our algorithm is O(n). See the supple-



mentary material for more implement details of stest cal-
culation. After obtaining stest, we calculate I(z

′
, R) =

−stest · Gz′ . The algorithm 1 shows Untrained Unlabeled
sample Influence Calculation.

3.4. Influence Selection for Active Learning

The algorithm 2 shows how Influence Selection for Ac-
tive Learning algorithm uses UUIC to select samples from
the unlabeled dataset.

Algorithm 2 Influence Selection for Active Learning

1: Compute the model gradient on reference set ∇θl(R, θ̂)

2: Compute the stest with ∇θl(R, θ̂)
3: for each sample z

′
in Ui do

4: Compute the I(z
′
, R) by algorithm 1 with input

stest, z
′

5: end for
6: Sort all unlabeled samples base on I(z

′
, R)

7: Select |Si| samples base on the active learning setting

4. Experiment
Since the active learning algorithm is a sampling algo-

rithm, indicating that the performance of the algorithm may
be sensitive to the dataset. Therefore, we evaluate ISAL
on different benchmarks in both classification and object
detection to show its generalization ability and compare it
with other methods that can be generally adapted to these
tasks. We further evaluate ISAL performance with the ob-
ject detection dataset within a large-scale setting, which has
not been mentioned before as far as we know. Finally, we
conduct the ablation study with visualization analysis.

The main experimental results have been provided as
plots due to the limited space. We provide tables in which
we report the performance mean for each plot and imple-
ment details of all comparing methods in the supplementary
material.

4.1. Image Classification

Image classification is the most common task which is
used in the previous works to validate their methods. In this
task, the neural network model is trained to recognize the
categories of the input images. The category of the image
needs to be labeled in the active learning task.

Datasets. Both CIFAR10 and CIFAR100 contains
50000 images for training and 10000 images for testing.
SVHN has 73257 images for training, 26032 images for
testing. We use the train set as an unlabeled set and evaluate
the model performance on the test set. We use classification
accuracy as the evaluation metric.

Active Learning Settings. For the experiments on CI-
FAR10, we randomly select 1000 images from the unla-

beled set as the initial labeled dataset, and in each of the
following steps, we add 1000 images to the labeled dataset.
For CIFAR100, we randomly select 5000 images from the
unlabeled set first and add 1000 images in the following
steps. For SVHN, we randomly select 2% of the unlabeled
set as the initial labeled dataset, and we add the same num-
ber of images in each of the following steps. We simulate
10 active learning steps and stop the active learning itera-
tion. We use the default data augmentation in pycls [25],
which includes random flip and crop. We normalize the im-
ages using the channel mean and standard deviation of the
training set. We repeat the experiment 5 times.

Target Model. We use ResNet-18 [12] to verify our
method, we implement the model and different active learn-
ing methods base on pycls. We train the model for 200
epochs with the mini-batch size of 128 and the initial learn-
ing rate of 0.1. After training 160 epochs, we decrease the
learning rate to 0.01. The momentum and the weight decay
are 0.9 and 0.0005 respectively.

Implement Details. For all datasets, we use all param-
eters in ResNet-18 to calculate the influence, and we use
the test set as reference set. When calculating the stest, we
random sample 250 images from the labeled set. We re-
peatedly calculate the stest 4 times and use the value after
averaging. We compare our method with random sampling,
coreset sampling [31] and learning loss sampling [40].

Results. The results on CIFAR10, CIFAR100 and
SVHN are shown in Figure 3(a), Figure 3(b) and Figure 3(c)
respectively. We show how much annotations our method
can save when it reaches other methods’ final performance,
the trained model performance after 10 active learning itera-
tions. For CIFAR10, our method uses roughly 1200 images
fewer than the coreset sampling when achieving the final
performance of coreset sampling, saving 12% of annota-
tion. When comparing with random sampling, our method
saves roughly 2300 images when achieving the final perfor-
mance of random sampling, saving 23% of annotation. For
CIFAR100, our method uses roughly 400 and 1300 images
fewer than the coreset sampling and random sampling, sav-
ing 2.9% and 9.3% of annotation respectively. For SVHN,
our method uses roughly 1800 and 2100 images fewer than
the coreset sampling and random sampling, saving 12% and
14% of annotation respectively.

4.2. Object Detection

Object detection aims to detect instances of semantic ob-
jects of a certain class in images. The detectors are trained
to localize the object by drawing bounding boxes(bboxes)
and classifying the object inside the bounding box. The
bboxes need to be drawn for the specific classes and the
category of the object in the bboxes need to be annotated
in the active learning task. In practice, we found that the
annotation cost of each image differs largely from others.
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Figure 3: Result for Image Classification. (a) Result on CIFAR10. (b) Result on CIFAR100. (c) Result on SVHN.

Take COCO dataset as an example, the image in it at most
has 63 bboxes and at least has zero bboxes. Thus, the cost
of annotating a set of images is highly correlated with the
number of bboxes instead of the number of images. Thus, in
the following experiments for object detection, we plot the
average number of the bounding box and average mAP/AP
from three tries.

Datasets. We choose the VOC2012 [6], which has been
widely used in other active learning methods for object de-
tection [15, 40], and COCO [20], a dataset that is commonly
used to evaluate the performance of a detector. VOC2012
has 5717 images for training and 5823 images for valida-
tion, we use the trainset as the unlabeled dataset and use the
validation set to evaluate the trained model performance.
We use the mAP as the evaluation metric. COCO dataset
has 118k images for training and 5000 images for valida-
tion. We use the trainset as the unlabeled dataset, and val-
idate the model performance on the validation set. We use
AP as the evaluation metric. We use the default data prepa-
ration pipeline which includes the random flipping, image
normalization with channel mean and standard deviation,
image resizing, and padding from the mmdetection [2].

Active Learning Settings. For the experiments on
VOC2012, we randomly select 500 images from the unla-
beled set as the initial labeled dataset, and in each of the
following steps of the active learning cycle, we add the 500
images to the labeled set. We simulate 10 active learning it-
eration steps. For COCO, we randomly select 5000 images
from the unlabeled set first and add 1000 images in the fol-
lowing step. Since the number of bounding boxes selected
by different methods has huge differences, for clearer com-
parison, we continue the active learning iteration until the
trained model achieves 22± 0.3% in AP.

Target Model. We use FCOS [37] detector with back-
bone ResNet-50 implemented in mmdetection to verify our
method. We also implement the active learning pipeline and
different active learning methods base on mmdetection. We
train the model for 12 epochs with the mini-batch size of 8
and the initial learning rate of 0.01. After training 8 and 11
epochs, we decrease the learning rate by 0.1 respectively.
The momentum and the weight decay are 0.9 and 0.0001

respectively.
Implement Details. For both datasets, when calculat-

ing the influence of the unlabeled data, we backpropagate
the loss to the parameters in FCOS’s last convolution layer,
which contains three kernels used to generate the final pre-
diction of classification, regression, and centerness score.
We use the validation set as reference set. When calculat-
ing the stest, we random sample at most 5000 images from
the labeled set. We repeatedly calculate the stest 4 times
and use the value after averaging. We compare our method
with random sampling, coreset sampling [31], learning loss
sampling [40] and localization stability sampling [15].

Results. The result on VOC2012 and COCO are shown
in Figure 4(a) and Figure 4(b) respectively. For VOC2012
dataset, when the trained model achieves 42% in mAP, our
method uses roughly 850 bboxes fewer than coreset sam-
pling, saving 13% of annotations, and saves roughly 2000
bboxes than localization stability sampling, decreasing the
annotations by 26%. Since the VOC2012 only has less than
6000 images, in the last iteration of active learning, different
methods have selected similar images. Thus, all methods
achieve similar performance. Our method becomes more
effective when it is applied to a large dataset.

For COCO, when achieving the target AP, it costs 15.3k
fewer bounding boxes than random and 117k fewer bound-
ing boxes than the learning loss sampling, saving 16%
and 59% annotation respectively. Our implementations
show that all comparing methods perform worse than ran-
dom sampling, meaning that their reported performance en-
hancement over random sampling is mainly caused by se-
lecting the image with more bounding boxes. Choose these
images significantly enhance the annotation cost, which is
contradictory to the purpose of active learning.

4.3. Large Scale Experiment in Object Detection

In this section, we conduct experiments on the large-
scale active learning setting for object detection. It aims
to prove that our method can be effective when the trained
model performance is close to the performance of the model
trained on the full dataset. This experiment further validates
the superiority of ISAL which can precisely select the sam-
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Figure 4: Result for Object Detection. (a) Result on VOC2012. (b) Result on COCO. (c) Result on COCO within a large-scale
setting.

ples with the most positive influence on model performance.
Datasets and Experiment Details. We use the COCO

trainset as the unlabeled dataset, and validate the trained
model performance on the validation set. We plot the num-
ber of the bounding boxes and AP to show the model perfor-
mance. We randomly select 10% images from the unlabeled
set first and add the same number of images as the first step
in the following steps. We iterate an active learning pipeline
10 times. We continue to use the FCOS detector with back-
bone ResNet-50 implemented in mmdetection to verify our
method. All other experiment details are the same as we
described in Section 4.2.

Results. The result is shown in Figure 4(c). When the
trained model performance achieve 34% in AP, which is
close to the performance of the FCOS trained on full COCO
dataset, our method uses roughly 40k bounding boxes fewer
than the coreset sampling, which has the best performance
in all comparing methods, decreasing the annotation cost by
8%. This also indicates that achieving 94.4% performance
of the model trained on full COCO dataset, we just need
60.7% of the annotations of the dataset.

4.4. Ablation Study

In this section, to validate the effectiveness of UUIC and
ISAL, we conduct experiments to discuss the properties of
each element in −∇θl(R, θ̂)TH−1

θ̂
Gz′ . We conduct all the

ablation studies on CIFAR10. All the experiment details are
the same as mentioned in section 4.1.

4.4.1 The Effect of K in Expected gradient
In this section, we discuss the effect of K in the expected
gradient Gz′ with which we calculate the influence of the
unlabeled sample. Tab. 1 shows the results. When K is
equal to 1, our active learning algorithm achieves the best
result in each step. Our analysis shows that, in some cases,
the direction of the gradient vector computed with the la-
bel of the first predicted class is just the opposite of the
one computed with the label of the second predicted class.
Therefore, when averaging the gradient, some value in the
Gz′ will be diminished, making the influence of z

′
inaccu-

rate.

K
number of CIFAR10 images

1000 3000 5000 7000 9000
1 45.52 67.72 81.24 85.96 89.26
2 45.52 65.65 81.20 85.37 88.15
5 45.52 65.19 78.52 85.43 89.13

10 45.52 62.26 72.28 80.14 83.03
Table 1: The effect of K in Gz′ .

Method number of CIFAR10 images
1000 3000 5000 7000 9000

ISAL 45.52 67.72 81.24 85.96 89.26
Grad Simi 45.52 67.54 80.54 85.72 88.60

Table 2: The effect of H−1

θ̂
on the performance of ISAL.

4.4.2 The Effect of H−1

θ̂
In this section, we discuss the effect of H−1

θ̂
. We com-

pare the performance of ISAL with Gradient Similarity.
They use −∇θl(R, θ̂)TH−1

θ̂
Gz′ and −∇θl(R, θ̂)TGz′ to

evaluate and select the unlabeled samples, respectively.
−∇θl(R, θ̂)TGz′ measures the similarity of gradients on
reference set and the expected gradients of an untrained and
unlabeled samples.

Tab. 2 shows that Gradient Similarity has a similar per-
formance as ISAL, though the ISAL performs better. In
essence, the Gradient Similarity uses the gradients on the
reference set to evaluate which parameters in the model
have not been learned well and selects the unlabeled im-
ages with a similar expected gradient to train in the next
step. This will help the model to obtain the biggest back-
propagated gradients on specific model parameters, moving
to the global optimal quickly. However, some unlabeled im-
ages with different expected gradients also provide a posi-
tive influence on the model. A similar phenomenon is men-
tioned in [16]. H−1

θ̂
helps ISAL to find these samples and

enhances ISAL performance.

4.4.3 The Selection of Reference Set
In this section, we try different substitutes for using the val-
idation set as the reference set. We try using the L1 as



Method number of CIFAR10 images
1000 3000 5000 7000 9000

ISAL 45.52 67.72 81.24 85.96 89.26
ISAL v2 45.52 67.06 80.57 85.71 88.92
ISAL v3 45.52 67.12 80.11 84.88 88.71
coreset 45.52 67.66 79.93 85.36 88.61
random 45.52 67.55 77.77 83.09 86.50

Table 3: Comparision of different reference set.

the reference set in each step of the iteration, named as
ISAL v2, and using the labeled dataset of each step Li as
the reference set, named as ISAL v3.

Tab. 3 shows that the ISAL v2 and ISAL v3 perfor-
mance is slightly worse than the ISAL, but they still perform
much better than random sampling. In essence, the gradi-
ents on the reference set represent whether the model pa-
rameters have fit in with the data distribution or not. Thus,
to ensure that the calculated influence value can precisely
represent the model performance change, the distribution
of the reference set needs to be similar to the distribution
of the U0. Since the L1 is also randomly sampled from U0,
the performance of ISAL v2 is more close to ISAL than
ISAL v3. However, L1 has been trained. The model gradi-
ents on L1 become smaller than the gradients on the valida-
tion set, and the calculated influence value may not be pre-
cise, explaining why ISAL v2 performs worse than ISAL.

4.5. Visualization Analysis

Figure. 5 shows the tSNE embeddings of the CIFAR10
training set. The red dots represent the images in S1 se-
lected by ISAL. Our proposed method tends to choose more
images with cat, bird, and deer. Our analysis shows that M1

has lower accuracy in these three classes. Thus selecting
the images of these three classes can provide a more pos-
itive influence on the model performance. In addition, the
M1 is trained on L1 which is randomly sampled, but the
model performs worse in these three classes than the other,
indicating that these three classes are hard to learn. Thus,
evenly sampling images from all classes would lead to data
redundancy. Instead, our proposed method selects samples
in bias enhancing the learning efficiency.

Figure. 6 shows some selected images of COCO dataset
in S1 by different methods. Our proposed method selects
images with fewer bboxes, while the bboxes’ size in the
selected images is significantly larger than the one selected
by other methods. In addition, the bboxes in the selected
images of our proposed method have a lower overlap ratio.
This indicates that the clear and large object in the image
helps the model learn more effectively. In the latter of the
iteration, our proposed method will select the images with
more objects and more complex scenarios, this would help
the model to learn from the easy to the difficult step by step.

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

Figure 5: The tSNE embeddings of the CIFAR10 training
set. The red dots represent the images in S1 selected by
ISAL.

Influence Selection

Random

Learning Loss

Figure 6: The selected images in COCO dataset by different
active learning algorithms.

5. Conclusion
We have proposed a task-agnostic and model-agnostic

active learning algorithm, Influence Selection for Active
Learning(ISAL), helping neural networks model to learn
more effectively and decreasing the annotation cost. By
making use of the Untrained Unlabeled sample Influence
Calculation(UUIC) to calculate the influence value for each
unlabeled sample, ISAL selects the samples which can pro-
vide the most positive influence on model performance.
ISAL achieves state-of-the-art performance on different
tasks in both commonly use settings and a newly-designed
large-scale setting. We believe that ISAL can be extended
to solve many active learning problems in other areas, and
it would not be restricted to the tasks in computer vision.
Acknowledgement: We thank Zheng Zhu for implement-
ing the classification pipeline, Bin Wang and Xizhou Zhu
for helping with the experiments, and thank Yuan Tian and
Jiamin He for discussing the mathematic derivation.
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Supplementary Material

In this supplementary material, we provide additional
details which we could not include in the main paper due
to space constraints. The material is composed as follows:

1. The derivation of the influence of untrained samples.

2. The implementation details of stest calculation.

3. The time complexity analysis.

4. The implementation details of comparing methods.

5. Additional experiments on CIFAR10 dataset and
COCO dataset.

6. The tables in which we report the average performance
for each plot.

A. The Derivation of the Influence of Un-
trained Samples

Newton Step and Quadratic Approximation. As-
suming that we have labeled dataset Li and loss func-
tion L(θ) = 1

n

∑
z∈Li

l(z, θ). After training a model
on Li, we have the model parameters θ̂ ∈ Θ, where
θ̂ = argmin θ∈Θ

1
n

∑
z∈Li

l(z, θ). Our purpose is to
estimate the parameters of model which is trained on Li

and the new added sample z
′
. The new loss function is

Lz′ (θ) = 1
n+1

∑
z′∪Li

l(z, θ), giving new trained model
parameter θ̂z′ = argmin θ∈Θ

1
n+1

∑
z′∪Li

l(z, θ).
Considering the quadratic approximation of the Lz′ (θ̂z′ )

Lz′ (θ̂z′ ) = Lz′ (θ̂) + (θ̂z′ − θ̂)T∇θLz′ (θ̂)+

1

2
(θ̂z′ − θ̂)T∇2

θLz′ (θ̂)(θ̂z′ − θ̂)
(5)

If the H−1

θ̂
is positive definite, the quadratic approximation

is minimized at

θ̂z′ − θ̂ = −∇θLz′ (θ̂)

∇2
θLz′ (θ̂)

= −[∇2
θLz′ (θ̂)]−1[∇θLz′ (θ̂)]

(6)

Thus, the quadratic approximation of θ̂z′ is equal to θ̂ −
[∇2

θLz′ (θ̂)]−1[∇θLz′ (θ̂)], and −[∇2
θLz′ (θ̂)]−1[∇θLz′ (θ̂)]

is the newton step.
Evaluate the Influence of an Untrained Sample. First

we add a small influence from z
′

to the loss function L(θ),
the new loss function is

Lε,z′ (θ) = argmin θ∈Θ
1

n

∑
z∈Li

l(z, θ) + εl(z
′
, θ)

= L(θ) + εl(z
′
, θ)

(7)

With new loss function, the model new parameters is ob-
tained θ̂ε,z′ = argmin θ∈Θ Lε,z′ (θ). We evaluate a sam-

ple z
′

importance by calculating the
d θ̂ε,z′

d ε

∣∣∣∣∣
ε=0

From equation 6 we know that

θ̂ε,z′ − θ̂ =− [∇2
θLε,z′ (θ̂)]−1[∇θLε,z′ (θ̂)]

=− [∇2
θL(θ̂) + ε∇2

θl(z
′
, θ̂)]−1

[∇θL(θ̂) + ε∇θl(z
′
, θ̂)]

(8)

Since θ̂ minimizes L(θ), ∇θL(θ̂) is equal to 0. Dropping
the O(ε2) terms, we have

θ̂ε,z′ − θ̂ ≈ −[∇2
θL(θ̂)]−1ε∇θl(z

′
, θ̂) (9)

We define H−1

θ̂

def
= [∇2

θL(θ̂)]−1, and we have

θ̂ε,z′ − θ̂ ≈ −H−1

θ̂
ε∇θl(z

′
, θ̂) (10)



Thus, we can evaluate a untrained sample by:

d θ̂ε,z′

d ε

∣∣∣∣∣
ε=0

=
θ̂ε,z′ − θ̂

ε

∣∣∣∣∣
ε=0

=
−εH−1

θ̂
∇θl(z

′
, θ̂)

ε

∣∣∣∣∣
ε=0

= −H−1

θ̂
∇θl(z

′
, θ̂)

(11)

B. The Implementation Details of stest Calcula-
tion

To evaluate an untrained unlabeled sample, I(z
′
, R) =

−∇θl(R, θ̂)TH−1

θ̂
Gz′ needs to be calculated. However,

it’s impossible to calculate the inverse matrix of the Hes-
sian matrix due to the memory constrain of GPU and the
time complexity, especially for the deep neural network. We
use the method proposed by Agarwal [1] to effectively ap-

proximate the stest
def
= H−1

θ̂
∇θl(R, θ̂) and then calculate

I(z
′
, R) = −stest ·Gz′ for each samples.

Dropping the θ̂ subscript for clarity, we define

H−1
j

def
=

∑j
i=0(I −H)i (12)

as the first j terms in the Taylor expansion of H−1. When
j → ∞, we have H−1

j → H−1.
From equation 12, we have

H−1
j = I + (I −H)H−1

j−1 (13)

The key idea of stochastic estimation is that we can substi-
tute the full H in equation 13 with the any unbiased esti-
mator of H to form H̃j . Since E[H̃−1

j ] = H−1
j , we still

have E[H̃−1
j ] = H−1, when j → ∞. In practice, we can

randomly sample zi and use ∇2
θl(zi, θ̂) as the unbiased es-

timator of H . Algorithm 3 shows how we approximate the
stest.

Algorithm 3 The calculation of stest

1: Input: v = ∇θl(R, θ̂)
2: Random sample k images {z1, z2, · · · , zk} from la-

beled dataset
3: initial the stest0 = v
4: for i in range(1, k + 1) do
5: stesti = v + (I −∇2

θl(zi, θ̂))stesti−1

6: end for
7: take the stestk as the unbiased estimator of stest
8: Return stest

In practice, we calculate the Hessian-vector products of
∇2

θl(zi, θ̂)stesti−1
instead of calculating the Hessian matrix

∇2
θl(zi, θ̂). We will repeat the algorithm 3 p times, and use

the averaged result as the final estimation of stest.

C. The Time Complexity Analysis

As demonstrated in Section B, our method can be di-
vided into two sections. First, instead of directly calcu-
late the H−1

θ̂
, we sample images from the labeled dataset

to calculate the stest, which is the stochastic estimation of
∇θl(R, θ̂)TH−1

θ̂
. Since the number of sampled images is

fixed, the time complexity is a constant C. Then, we cal-
culate the influence for each unlabeled sample with stest.
Noted that |U | = n, the time complexity is O(n).

D. The Implementation Details of Comparing
Methods

D.1. Image Classification

For coreset sampling [31], we follow [40] and imple-
ment the K-Ceter-Greedy algorithm, which is just slightly
worse than the mixed-integer program but much less time-
consuming. We run the algorithm by using the feature be-
fore the classification layer as [31] reported. For the learn-
ing loss sampling, we connect the learning loss module to
each block of ResNet-18, stopping the loss prediction mod-
ule gradient from back-propagating to the model after 120
epochs, and set the λ to 1 as [40] do. We first randomly
select a subset with 10000 images from unlabeled samples
before predicting the loss and selecting the image with the
largest predicted loss.

D.2. Object Detection

For coreset sampling, we implement the K-Ceter-Greedy
algorithm. We apply global average pooling on the fea-
ture after the regression branch and the classification branch
of FCOS [37], then we concatenate the features from both
branches and use this to run the algorithm. We also tried us-
ing the feature from the Feature Pyramid Network(FPN) of
FCOS to run the algorithm, but it does not perform better.

For the learning loss sampling, we use the 5 feature maps
from the FPN of FCOS. We stopping the loss of the loss
prediction module from back-propagating to the backbone,
otherwise, the detector performance would deteriorate sig-
nificantly. We set the λ to 1.

For localization stability sampling [15], we imple-
ment the Localization Stability method in the paper, since
its performance is evaluated on both VOC2012 [6] and
COCO [20] datasets.

D.3. Large Scale Experiment in Object Detection

All the implementation details of the comparing methods
are exactly the same as D.2
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Figure 7: Result for CIFAR10 in large-scale active learning
setting.
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Figure 8: Result for COCO with Faster R-CNN.

E. Additional Experiments

E.1. Image Classification

In this section, we provide additional experiments on im-
age classification with CIFAR10 in large scale active learn-
ing setting.

Active Learning Settings. For the experiments on CI-
FAR10, we randomly select 5000 images from the unla-
beled set as the initial labeled dataset, and in each of the
following steps, we add 5000 images to the labeled dataset.
The simulate 10 active learning steps and stop the active
learning iteration. All other implementation details are ex-
actly the same as we described in the main paper.

Results. The results on CIFAR10 with large-scale ac-
tive learning setting are shown in Figure 7. Our proposed
method outperforms all comparing methods before step 6.
Our implementation shows that both our method and core-
set sampling achieve the best performance at step 5, and

the performance of the trained model deteriorates when we
keep enlarging the labeled dataset. In practice, it is not nec-
essary to continue the active learning iteration after step 5.
This phenomenon indicates that, when using the ResNet-18
as the classifier and using the test set of CIFAR10 as the
benchmark to evaluate the model performance, some im-
ages in the training set of CIFAR10 provide a negative in-
fluence on the model’s performance. Active learning algo-
rithm does help trained model to achieve better performance
with fewer annotations.

E.2. Object Detection

In this section, we provide additional experiments on ob-
ject detection with the COCO dataset.

Active Learning Settings. We randomly select 5000 im-
ages from the unlabeled set first and add 1000 images in the
following steps. Since the number of bounding boxes se-
lected by different methods has huge differences, for clearer
comparison, we continue the active learning iteration until
the trained model achieves 22± 0.3% in AP.

Target Model. We use Faster R-CNN [27] detector with
backbone ResNet-50 implemented in mmdetection [2] to
verify our method. We train the model for 12 epochs with
the mini-batch size of 8 and the initial learning rate of 0.01.
After training 8 and 11 epochs, we decrease the learning rate
by 0.1 respectively. The momentum and the weight decay
are 0.9 and 0.0001 respectively.

Implementation Details. When calculating the influ-
ence of the unlabeled data, we backpropagate the loss to
the parameters in the last convolution layer for regression
and classification in Region Proposal Network(RPN), and
to fully connected layer for regression result and classifi-
cation result in Region of Interest Network(RoI) of Faster
R-CNN. We use the validation set as reference set. When
calculating the stest, we random sample at most 500 im-
ages from the labeled set. We repeatedly calculate the stest
4 times and use the value after averaging. We compare
our method with random sampling and localization stability
sampling [15], which can be implemented in Faster R-CNN
easily. For localization stability sampling [15], we imple-
ment the Localization Stability method in the paper.

Results. The results on Faster R-CNN are shown in Fig-
ure 8. When achieving 21.8 in AP, our method cost 7.1k
fewer bounding boxes than random sampling, saving 10.4%
annotations. This result shows that our method can be ef-
fective in both one-stage and two-stage detectors. It further
substantiates that our method is task-agnostic and model-
agnostic.

F. The Experiment Results

Table 4, table 5 and table 6 show the experiment results
on the image classification of the main paper. Table 7 shows



the experiment result of Section E.1 in supplementary ma-
terial.

Table 8, table 9 and table 10 show the experiment results
on the object detection of the main paper. Table 11 shows
the experiment result of Section E.2 in supplementary ma-
terial.



Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 45.51799931 54.86599902 67.72399840 76.69599825 81.23799817
coreset 45.51799931 58.29599852 67.65599847 75.99799808 79.93399816
random 45.51799931 58.40199852 67.44199847 72.30399829 77.86199819

learningloss 45.91599973 58.88999852 69.14799823 75.80599807 80.11599825

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 83.61199812 85.95799826 88.05599827 89.26399810 89.95799797
coreset 81.53599801 85.36399841 87.19999817 88.61399807 89.05199809
random 81.93599806 83.05799810 84.75199825 86.45999833 87.28999833

learningloss 82.25999810 84.46999836 85.10199790 86.66799833 87.07999842
Table 4: The experiment results on CIFAR10 with ResNet-18.

Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 36.97799921 42.69599870 45.82199922 50.78799950 53.40799696
coreset 36.97799921 43.06599873 46.78799956 50.53399960 53.17999910
random 36.97799921 41.70599863 46.59999991 49.17400009 52.11799930

learningloss 34.06799937 38.06399904 44.43599916 45.98999956 48.60199980

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 56.45799872 58.26799854 59.87199865 61.7459986 63.37799866
coreset 56.02399869 58.10799861 59.32599477 61.24399836 62.70399857
random 53.43599904 56.11799880 58.47799854 60.21399841 61.22999834

learningloss 52.50199925 53.82599889 55.67399864 57.63399866 59.55999863
Table 5: The experiment results on CIFAR100 with ResNet-18.

Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 37.82575205 47.63829102 54.23709167 57.31100053 61.49200840
coreset 37.82575205 48.01090959 53.73232837 57.43315776 60.21665482
random 37.82575205 48.01090931 52.56760825 57.24646455 60.07759528

learningloss 38.82068125 43.61785414 50.38337374 52.06561057 55.83128330

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 65.13214355 66.81315140 69.44836955 71.31146101 72.86339711
coreset 62.84495852 65.01152269 66.76705426 68.27980783 70.82436816
random 62.97172561 65.16671630 65.52473728 69.23401795 70.40181142

learningloss 56.31453489 59.98309629 58.65165838 61.91687003 64.04348344
Table 6: The experiment results on SVHN with ResNet-18.



Methods 5 times average of Accuracy(%) in each step
1 2 3 4 5

ISAL 77.48999786 89.33399824 92.19199778 93.55399844 94.27999855
coreset 77.48999786 88.25799831 92.00199783 93.46399852 94.20599862
random 77.48999786 87.05999821 90.03599803 91.70399761 92.44999793

learningloss 60.66199856 72.72399856 77.17199846 80.43999806 83.08399811

Methods 5 times average of Accuracy(%) in each step
6 7 8 9 10

ISAL 94.15999845 93.89199833 93.80199861 93.68999855 93.54599838
coreset 94.15399850 94.16999856 94.02599862 93.66199836 93.24799830
random 92.66799801 92.97199826 93.04599803 93.65399836 93.53199820

learningloss 84.17599796 84.85199794 85.39199788 85.36999783 85.04999776
Table 7: The experiment results on CIFAR10 in large-scale setting with ResNet-18.

Method 3 times average of results in each step
1 2 3 4 5

ISAL
mAP 0.02366667 0.12766667 0.24633333 0.32366667 0.42

bbox num 1338 2777.66667 3606.66667 4446 5616
10k × mAP / bbox num 0.17688092 0.45961839 0.68299445 0.72799520 0.74786325

Coreset
mAP 0.02366667 0.13 0.25733333 0.38466667 0.459

bbox num 1338 2624.66667 4149.33333 5736.66667 7292.66667
10k × mAP / bbox num 0.17688092 0.49530099 0.62017995 0.67054038 0.62939940

Random
mAP 0.02366667 0.11666667 0.24133333 0.342 0.43666667

bbox num 1338 2683.66667 4097.66667 5450.66667 6833.66667
10k × mAP / bbox num 0.17688092 0.43472861 0.58895306 0.62744618 0.63899322

Learningloss
mAP 0.023 0.13 0.25233333 0.35933333 0.42433333

bbox num 1338 2780.66667 4161.66667 5627 7236
10k × mAP / bbox num 0.17189836 0.46751379 0.60632759 0.63858776 0.58641975

Localization stability
mAP 0.02366667 0.136 0.243 0.33233333 0.4245

bbox num 1338 2713.33333 3940.66667 5653 7601.66667
10k × mAP / bbox num 0.17688092 0.50122850 0.61664693 0.58788844 0.55843017

Method 3 times average of results in each step
6 7 8 9 10

ISAL
mAP 0.47166667 0.515 0.55233333 0.57666667 0.596

bbox num 7190.33333 8703.66667 10160 11503 12967.6667
10k × mAP / bbox num 0.65597330 0.59170465 0.54363517 0.50131850 0.45960466

Coreset
mAP 0.51033333 0.552 0.57666667 0.59666667 0.604

bbox num 8812 10286.3333 11635 12888.3333 14194.3333
10k × mAP / bbox num 0.57913451 0.53663437 0.49563100 0.46295099 0.42552192

Random
mAP 0.4845 0.53533333 0.56133333 0.57866667 0.595

bbox num 8188.33333 9575.66667 11011.6667 12426 13813
10k × mAP / bbox num 0.59169550 0.55905594 0.50976237 0.46569022 0.43075364

Learningloss
mAP 0.49566667 0.54866667 0.566 0.58266667 0.59866667

bbox num 8752.33333 10368 11750 12981.6667 14119.3333
10k × mAP / bbox num 0.56632517 0.52919239 0.48170213 0.44883811 0.42400491

Localization stability
mAP 0.46533333 0.52766667 0.55933333 0.59 0.60466667

bbox num 9169.66667 11056.3333 12580 13853.6667 14843.6667
10k × mAP / bbox num 0.50747028 0.47725286 0.44462109 0.42588003 0.40735667

Table 8: The experiment results on VOC2012 with FCOS.



Method 3 times average of results in each step
1 2 3 4 5

ISAL
AP 0.12833333 0.14433333 0.153 0.16233333 0.166

bbox num 36603.6667 37934 40028.3333 42021 43947.3333
10k × AP / bbox num 0.03506024 0.03804854 0.03822293 0.03863148 0.03777249

Coreset
AP 0.12833333 0.15266667 0.17333333 0.18766667 0.19833333

bbox num 36603.6667 47194 57032.3333 66384.3333 75564.3333
10k × AP / bbox num 0.03506024 0.03234875 0.03039212 0.02826972 0.02624695

Random
AP 0.12833333 0.15033333 0.16566667 0.17733333 0.188

bbox num 36603.6667 44055.6667 51381.3333 58653.6667 66240
10k × AP / bbox num 0.03506024 0.03412350 0.03224258 0.03023397 0.02838164

Learningloss
AP 0.127 0.147 0.163 0.17766667 0.185

bbox num 36603.6667 62127.6667 84566.3333 105900.333 126722.333
10k × AP / bbox num 0.03469598 0.02366096 0.01927481 0.01677678 0.01459885

Localization stability
AP 0.12833333 0.149 0.16566667 0.179 0.191

bbox num 36603.6667 47503.3333 58252.6667 69085.6667 79574.6667
10k × AP / bbox num 0.03506024 0.03136622 0.02843933 0.02590986 0.02400261

Method 3 times average of results in each step
6 7 8 9 10

ISAL
AP 0.172 0.18666667 0.18333333 0.189 0.19133333

bbox num 45810 47864.6667 49865 51930.6667 54414.3333
10k × AP / bbox num 0.03754639 0.03899884 0.03676594 0.03639468 0.03516230

Coreset
AP 0.20933333 0.21766667 N/A N/A N/A

bbox num 84924 94075.6667 N/A N/A N/A
10k × AP / bbox num 0.02464949 0.02313740 N/A N/A N/A

Random
AP 0.199 0.20533333 0.21433333 0.22 N/A

bbox num 73457 80720.6667 88030.6667 95464.3333 N/A
10k × AP / bbox num 0.02709068 0.02543752 0.02434758 0.02304526 N/A

Learningloss
AP 0.19433333 0.20233333 0.21166667 0.21766667 N/A

bbox num 145197 163798 181040.333 197804 N/A
10k × AP / bbox num 0.01338412 0.01235261 0.01169169 0.01100416 N/A

Localization stability
AP 0.2 0.20866667 0.217 N/A N/A

bbox num 89557.3333 99480.6667 109179.333 N/A N/A
10k × AP / bbox num 0.02233206 0.0209756 0.01987556 N/A N/A

Method 3 times average of results in each step
11 12 13 14 15

ISAL
AP 0.19466667 0.197 0.20233333 0.207 0.20933333

bbox num 56457 59059 61677 64093.3333 66729
10k × AP / bbox num 0.03448052 0.03335647 0.03280531 0.03229665 0.03137067

Method 3 times average of results in each step
16 17 18 19 20

ISAL
AP 0.21 0.21133333 0.216 0.21633333 0.218

bbox num 69402 72282.3333 74690 77545.6667 80139
10k × AP / bbox num 0.03025849 0.02923720 0.02891953 0.0278975 0.02720274

Table 9: The experiment results on COCO with FCOS.



Method Results in each step
1 2 3 4 5

ISAL
AP 0.212 0.25 0.275 0.291 0.305

bbox num 86838 118762 169688 232923 286589
10k × AP / bbox num 0.02441328 0.02105050 0.01620621 0.01249340 0.01064242

Coreset
AP 0.212 0.273 0.305 0.321 0.334

bbox num 86838 201072 307552 413095 510927
10k × AP / bbox num 0.02441328 0.01357723 0.00991702 0.00777061 0.00653714

Random
AP 0.212 0.264 0.294 0.309 0.322

bbox num 86838 173507 259539 345013 430922
10k × AP / bbox num 0.02441328 0.01521552 0.01132778 0.00895618 0.00747235

Learningloss
AP 0.212 0.271 0.3 0.319 0.33

bbox num 86838 291934 426039 532231 609475
10k × AP / bbox num 0.02441328 0.00928292 0.00704161 0.00599364 0.00541450

Localization stability
AP 0.212 0.271 0.296 0.314 0.327

bbox num 86838 194677 289580 385590 485663
10k × AP / bbox num 0.02441328 0.01392049 0.0102217 0.00814337 0.00673306

Method Results in each step
6 7 8 9 10

ISAL
AP 0.322 0.331 0.347 0.354 0.363

bbox num 351747 449780 579039 719234 860001
10k × AP / bbox num 0.00915431 0.00735915 0.00599269 0.00492190 0.00422093

Coreset
AP 0.344 0.351 0.355 0.36 0.364

bbox num 601362 680853 748513 806205 860001
10k × AP / bbox num 0.00572035 0.00515530 0.00474274 0.00446537 0.00423255

Random
AP 0.332 0.343 0.349 0.356 0.362

bbox num 516689 602084 688451 774142 860001
10k × AP / bbox num 0.00642553 0.0056969 0.00506935 0.0045986 0.00420930

Learningloss
AP 0.338 0.35 0.35 0.358 0.361

bbox num 668558 713657 751218 805063 860001
10k × AP / bbox num 0.00505566 0.00490432 0.0046591 0.00444686 0.00419767

Localization stability
AP 0.339 0.344 0.348 0.358 0.36

bbox num 583831 674087 744716 801876 860001
10k × AP / bbox num 0.00580648 0.00510320 0.00467292 0.00446453 0.00418604

Table 10: The experiment results on COCO in large-scale setting with FCOS.



Method 3 times average of results in each step
1 2 3 4 5

ISAL
AP 0.17233333 0.18266667 0.19066667 0.19766667 0.203

bbox num 36603.6667 40120.3333 43547.3333 46840.6667 50633.3333
10k × AP / bbox num 0.04708089 0.04552970 0.04378378 0.04219980 0.04009217

Random
AP 0.17233333 0.18633333 0.19866667 0.207 0.21533333

bbox num 36603.6667 44055.6667 51381.3333 58653.6667 66240
10k × AP / bbox num 0.04708089 0.04229498 0.03866514 0.03529191 0.03250805

Localization stability
AP 0.17333333 0.18266667 0.19133333 0.20033333 0.20633333

bbox num 36603.6667 42171 47576.3333 53144.6667 59066.3333
10k × AP / bbox num 0.04735410 0.04331571 0.04021607 0.03769585 0.03493248

Method 3 times average of results in each step
1 2 3 4 5

ISAL
AP 0.20733333 0.21266667 0.21766667 N/A N/A

bbox num 54060.3333 57655 61360.3333 N/A N/A
10k × AP / bbox num 0.03835221 0.03688608 0.03547351 N/A N/A

Random
AP 0.222 N/A N/A N/A N/A

bbox num 73457 N/A N/A N/A N/A
10k × AP / bbox num 0.03022176 N/A N/A N/A N/A

Localization stability
AP 0.21133333 0.21766667 N/A N/A N/A

bbox num 64631.3333 70119.3333 N/A N/A N/A
10k × AP / bbox num 0.03269828 0.03104232 N/A N/A N/A

Table 11: The experiment results on COCO with Faster R-CNN.


