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A B S T R A C T

As a fundamental task for geographical information updating, 3D city modeling, and other critical applications,
the automatic extraction of building footprints from high-resolution remote sensing images has been substan-
tially explored and received increasing attention over recent years. Among different types of building extraction
methods, the polygonal segmentation methods produce vector building polygons that are in a more realistic
format compared with those obtained from pixel-wise semantic labeling and contour-based methods. However,
existing polygonal building segmentation methods usually require a perfect segmentation map and a complex
post-processing procedure to guarantee the polygonization quality, or produce inaccurate vertex prediction
results that suffer from wrong vertex sequence, self-intersections, fixed vertex quantity, etc. In our previous
work, we have proposed a method for polygonal building segmentation from remote sensing images that
addresses the above limitations of existing methods. In this paper, we propose PolyCity, which further extends
and improves our previous work in terms of the application scenario, methodology design, and experimental
results. Our proposed PolyCity contains the following three components: (1) a pixel-wise multi-task network
for learning the semantic and geometric information via three tasks, i.e., building segmentation, boundary
prediction, and edge orientation prediction; (2) a simple but effective vertex selection module (VSM), which
effectively bridges the gap between pixel-wise and graph-based models via transforming the segmentation map
into valid polygon vertices; (3) a graph-based vertex refinement network (VRN) for automatically adjusting the
coordinates of VSM-generated valid polygon vertices, producing the final building polygons with more precise
vertices. Results on three large-scale building extraction datasets demonstrate that our proposed PolyCity
generates vector building footprints with more accurate vertices, edges, shapes, etc., achieving significant
vertex score improvements while maintaining high segmentation and boundary scores compared with the
current state-of-the-art. The code of PolyCity will be released at https://github.com/liweijia/polycity.
1. Introduction

Building footprint extraction is a fundamental task in a variety
of practical applications, such as urban planning, disaster assessment
and environmental management (Sun et al., 2018; Li et al., 2019a). It
also provides important information for residential area management,
statistics of urban and rural population, maintenance and update of
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geographic information data, etc. (Demir et al., 2018; Alshehhi et al.,
2017). Traditional methods usually require extracting conventional
features based on spectral, lines, shadow index, etc. (Ok et al., 2012),
which is followed by machine learning classifiers such as Random
Forest and SVM (Turker and Koc-San, 2015). In recent years, owing
to the rapid progress of deep neural networks (DNN) and the growing
vailable online 24 May 2023
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abundance of building annotations, DNN-based building extraction has
become the main stream method and widely explored in remote sens-
ing, GIS, computer vision, and other research domains (Li et al., 2019a;
Shi et al., 2020; Zhao et al., 2021; Liu et al., 2022; Huang et al., 2021).
Nevertheless, due to several challenges such as the great discrepancy
in color, shape, area and material of buildings in different regions, as
well as the high similarity and unclear boundary between buildings and
other object types in remote sensing images (Li et al., 2018), automatic
building extraction from remote sensing imagery still suffers from an
unsatisfactory accuracy that requires further improvement.

Most DNN-based studies formulate building extraction as a pixel-
wise semantic labeling task. Among these studies, various semantic
segmentation models have been applied and adapted to building extrac-
tion task, based on U-Net (Ronneberger et al., 2015; Li et al., 2021b),
FC-DenseNet (Yang et al., 2018; Jégou et al., 2017), HR-Net (Wang
et al., 2020; Li et al., 2021a), etc. Similar to the research progress in
general object segmentation, several studies designed building extrac-
tion methods based on modified instance segmentation models such as
Mask R-CNN (He et al., 2017; Mahmud et al., 2020; Wang et al., 2022)
and hybrid task cascade (HTC) (Chen et al., 2019; Liu et al., 2021).
To further improve the building extraction performance, many studies
design effective strategies combined with the deep learning models
such as fusing multiple data types (Li et al., 2019a; Sun et al., 2018) or
introducing additional tasks (Bischke et al., 2019; Guo et al., 2022).

The above semantic labeling-based methods usually produce build-
ing extraction results with curved and irregular boundaries, which are
not in the desirable vector format of building polygons. To tackle these
limitations, many recent studies propose post-processing or vertex-
based methods for polygonal building segmentation. For post-
processing-based studies, various contour simplification or polygoniza-
tion methods have been proposed for transforming the output raster
segmentation maps of semantic or instance segmentation models into
regularized building polygons in vector format (Li et al., 2020; Zhao
et al., 2018). Compared with the pixel-wise and contour-based methods
that generate objects with curved boundaries, the above polygonal seg-
mentation methods are more suitable for extracting desirable building
footprints that are annotated in a line-based manner. However, these
methods usually require multiple steps of complex procedures, such
as segmentation map refinement, polygonization, regularization, and
other essential steps.

For vertex-based object segmentation studies, several methods are
designed for directly predicting a vertex at each time step using a
CNN-RNN architecture, such as Polygon-RNN (Castrejon et al., 2017),
Polygon-RNN++ (Acuna et al., 2018), PolyMapper (Li et al., 2019b),
Zhao et al. (2021), etc. Although the prediction process is similar to
the actual annotation procedure of a building polygon, the sequential
manner of the recurrent model limits its capability of predicting each
vertex for building polygons with complex contours, and the failure
case of a former vertex can have a negative impact on latter prediction.
In other studies such as PolyTransform (Liang et al., 2019b) and Curve-
GCN (Ling et al., 2019), the polygon vertices are first selected from a
segment contour using a unified distance or an initial contour given
a fixed quantity, which will be further adjusted simultaneously in a
regression manner. Such methods effectively improve the segmentation
accuracy for general vision datasets such as Cityscapes. Yet, due to
the diverse quantity of building vertex (ranging from four to over
a hundred), these methods usually generate redundant vertices for
buildings with simple contour and insufficient vertices for buildings
with complex contour. Another category of building extraction study is
based on the active contour model (ACM) (Marcos et al., 2018; Cheng
et al., 2019; Xu et al., 2022; Gur et al., 2020), of which most methods
are designed for building segmentation from cropped images with a
single instance. Similar to Curve-GCN (Ling et al., 2019), these methods
require a fixed number of vertices and suffer from vertex redundancy
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or insufficiency problems.
In our previous work (Li et al., 2021c), we proposed a new approach
for polygonal building segmentation, which effectively addresses the
limitations of existing post-processing and vertex-based building seg-
mentation methods. We provided preliminary experimental results on
SpaceNet and CrowdAI datasets, and comparison with state-of-the-art
polygonal segmentation methods (ASIP (Li et al., 2020), PolyMap-
per (Li et al., 2019b), Frame Field Learning (Girard et al., 2021), etc.).
In this work, we further extend and improve our previous work (Li
et al., 2021c) in terms of the application scenario, methodology de-
sign, and experimental results. Our proposed PolyCity consists of a
pixel-wise multi-task network and a graph-based vertex refinement
network, as well as a rule-based vertex selection module that bridges
the gap between the above two components. The multi-task network
is designed for learning both semantic and geometric information of
building polygons via building segmentation, boundary prediction, and
edge orientation prediction. The vertex selection method is designed
for transforming the building segmentation contour into valid polygon
vertices based on the three types of network outputs. The vertex
refinement network is designed for automatically adjusting the valid
polygon vertices to more accurate locations.

We compare our proposed PolyCity with three powerful methods
for single object segmentation (i.e., Polygon-RNN (Castrejon et al.,
2017), Polygon-RNN++ (Acuna et al., 2018) and Curve-GCN (Ling
et al., 2019)), HR-Net followed by traditional polygonization method
(baseline) (Wang et al., 2020), and two recently proposed methods
dedicated for building extraction (i.e., CVNet (Xu et al., 2022) and
Frame Field Learning (Girard et al., 2021)). We also provide extensive
experimental results comparison between our method and our previous
work (Li et al., 2021c). Results on three popular building datasets
demonstrate that our approach improves the vertex prediction accuracy
by 3%–4% compared with the current state-of-the-art, producing build-
ing polygons with more precise vertices, edges, and shapes. The code
of PolyCity will be released at https://github.com/liweijia/polycity.

The new contributions compared with Li et al. (2021c) are summa-
rized as follows:

• We extend (Li et al., 2021c) to a new application scenario, i.e., ex-
tracting the individual building instance from the input images
that are cropped by the ground truth or predicted bounding boxes.

• We remain the general methodology design following Li et al.
(2021c) and modify the main components for the single ob-
ject segmentation scenario, in terms of network architectures,
multi-task definitions, vertex selection rules, etc.

• We provide experimental result comparison with additional meth-
ods on more building extraction datasets, using new experimental
settings and evaluation metrics that could more directly reflect
the polygonization performance, which demonstrates the signifi-
cant improvement of our method compared with Li et al. (2021c)
and other building extraction methods.

• We rewrite the whole paper to provide more details of motivation,
methodology, experiments and analysis.

2. Related work

2.1. Pixel-wise building footprint extraction

Building footprint extraction from satellite or aerial images has been
broadly studied for decades. Traditional building extraction methods
include shadow index (Huang and Zhang, 2011), edge regularity (Chen
et al., 2018a), or line fragment (Sun et al., 2014) based methods, etc.
Recently, most building footprint extraction studies are based on deep
learning methods for pixel-wise semantic labeling. Semantic segmenta-
tion models (e.g. U-Net (Ronneberger et al., 2015), FC-DenseNet (Jégou
et al., 2017), High-Resolution Network (HR-Net) (Wang et al., 2020))
and instance segmentation models (e.g. Mask-RCNN (He et al., 2017))

have been broadly explored and achieved promising building extraction
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results (Yang et al., 2018; Li et al., 2019a, 2021b). For example, Guo
et al. (2022) proposed a coarse-to-fine network to progressively refine
the building boundaries at different scales, based on the U-Net archi-
tecture. In Wu et al. (2022), a topography-aware loss was introduced
to boost the network capability for preserving building segmentation
boundary, based on the high-resolution network architecture. In addi-
tion, various useful strategies (e.g. data fusion (Li et al., 2019a; Sun
et al., 2018; Hosseinpour et al., 2022), distance transform (Bischke
et al., 2019), boundary regularization (Zhao et al., 2018; Wei et al.,
2019), etc.) are combined with the pixel-wise segmentation network to
further improve the building segmentation performance.

Although pixel-wise CNN-based methods have achieved increasingly
higher prediction accuracies, the building extraction results produced
from these methods often have a great discrepancy compared with
the desired polygonal buildings for actual applications. The outlines of
building footprints predicted from these methods are in a curved shape,
while the actual building polygons are manually annotated in a line-
based manner, with a relatively small number of edges and vertices. It
often requires onerous efforts for processing the prediction results of
these methods into the desirable building polygons in vector format.

2.2. Polygonal object segmentation

To solve the above limitations, many studies design polygonal
object segmentation methods to produce the building footprints or
other types of objects in a desirable vector format. Existing polygo-
nal segmentation methods can be divided into two main categories,
i.e., post-processing-based methods (Li et al., 2020; Zhao et al., 2018)
and vertex-based methods (Castrejon et al., 2017; Acuna et al., 2018;
Ling et al., 2019; Li et al., 2019b; Chen et al., 2020; Zorzi et al.,
2022). For post-processing-based methods, raster maps or curved con-
tours are vectorized or simplified via various polygonization strategies,
such as Douglas–Peucker (Wu and Marquez, 2003) and polyline dec-
imation (Dyken et al., 2009), and other traditional post-processing
methods. In recent years, many studies proposed post-processing-based
methods for vectorizing the semantic segmentation or instance segmen-
tation results. In Zhao et al. (2018), a boundary regularization method
was proposed for regularizing the building instances produced from the
Mask-RCNN model into simplified polygons via multiple steps. Li et al.
(2020) proposed ASIP, a polygonal partition refinement method for
vectorizing buildings and other objects from the output segmentation
map of a U-Net-based model. In Wei et al. (2019), a series of strategies
were proposed for transforming the output segmentation maps of an
FCN-based model into final regularized building footprints, including
segmentation map refinement via post-processing, vectorization and
polygonization of the refined segmentation maps, as well as polygon
regularization to convert the former polygons into final structured
building footprints.

The other category of polygonal segmentation methods designs deep
neural networks that directly predict the polygon vertices. Polygon-
RNN (Castrejon et al., 2017) is a pioneer vertex-based method for single
object segmentation, which designed LSTM-based architecture for pre-
dicting a vertex location at each time step. Polygon-RNN++ (Acuna
et al., 2018) further extended this work to improve the segmentation
accuracy through several strategies including attention mechanism, an
evaluator with beam search, reinforcement learning, and upscaling
with a graph neural network. PolyMapper (Li et al., 2019b) extended
the application scenario of Polygon-RNN, producing multiple building
footprints and road typologies in a vector format. Although these
methods produce vectorized prediction results, it is hard to correctly
predict vertex for polygons with a complex contour and the failure cases
of former vertices can result in continuous errors on latter predictions,
due to the sequential prediction order of the recurrent model. Curve-
GCN (Ling et al., 2019) is another type of vertex-based method for
single object segmentation, which simultaneously predicts all vertices
28

using a graph convolutional network and achieves better segmentation
accuracy compared with Polygon-RNN++. However, as Curve-GCN
represents the object as a graph with a fixed number of vertices, it
often generates redundant vertices for simple polygons and insufficient
vertices for complex polygons. A recently proposed method, named
PolyWorld (Zorzi et al., 2022), regards all building polygons of one
image as a whole graph. Different from the CNN and GNN used in
our method, PolyWorld uses a graph neural network to predict the
connection strength between each pair of vertices detected by CNN,
which are further optimized by minimizing a combined segmentation
and polygonal angle difference loss. Although producing neat building
polygons, the performance drops seriously for buildings with inner
holes, small areas, or other complex cases.

The active contour model (ACM) is another type of widely-used
method for polygon-based building extraction. Among these studies,
most ACM-based methods are proposed for single object segmenta-
tion (Marcos et al., 2018; Cheng et al., 2019; Gur et al., 2020; Xu
et al., 2022), i.e., extracting a single building instance from a cropped
input image. For instance, Marcos et al. (2018) proposed DSAC, a deep
structured active contour method that integrates ACMs and CNNs via
learning the ACM parameterizations per instance using a CNN for single
building segmentation. Cheng et al. (2019) designed DarNet, a deep
active ray network for single building segmentation, which avoids the
self-intersection and improves the boundary performance via adopting
the polar coordinates and a new loss function. On the other hand,
several recent studies are designed for multiple building segmentation.
For example, Hatamizadeh et al. (2020) proposed trainable deep active
contours (TDACs), which intimately unites CNNs and ACMs and devises
an implicit ACM formulation for extracting multiple buildings from
remote sensing images. Similar to Curve-GCN, ACM-based methods
represent the object as a graph with a fixed number of vertices (contour
points). Consequently, these methods also suffer from producing redun-
dant vertices for simple polygons and insufficient vertices for complex
polygons.

In summary, the post-processing-based methods usually require a
complex procedure with multiple steps. The polygonization perfor-
mance is seriously influenced by the quality of the segmentation map.
For vertex-based methods, the recurrent manner of the RNN-based
methods limits the vertex prediction capability for complex polygons,
while the GCN and ACM-based methods suffer from the fixed vertex
quantity. Our approach, on the contrary, combines the pixel-wise CNN
model with the vertex-based graph model via a rule-based vertex
selection module, which effectively solves the above limitations and
produces building polygons with precise vertices even for complex
cases.

2.3. Multi-task learning

Multi-task learning strategy has been effectively applied in building
and other object segmentation studies. In these studies, additional
prediction tasks are introduced and trained jointly with the object seg-
mentation tasks, of which distance prediction (Hui et al., 2018; Bischke
et al., 2019; Mahmud et al., 2020) and direction prediction (Guo et al.,
2022; Yuan et al., 2020; Girard et al., 2021) are two broadly explored
tasks for improving the segmentation and boundary accuracies. For
example, Bischke et al. (2019) proposed a multi-task building extrac-
tion method that combines distance transform prediction with building
segmentation tasks to improve the boundary performance. With a
different distance representation, Mahmud et al. (2020) introduced
the modified signed distance function prediction that is jointly trained
with building instance segmentation, semantic segmentation, and DSM
prediction tasks.

Several recent studies introduced direction-related prediction tasks
to improve the segmentation boundary (Yuan et al., 2020; Girard et al.,
2021; Guo et al., 2022). Yuan et al. (2020) proposed SegFix to refine the
segmentation boundary of existing models via additionally learning a

direction map, i.e. the direction from the boundary pixel to an interior
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Fig. 1. The overall pipeline of our proposed polygonal building segmentation method, which includes: (1) a multi-task CNN for building segmentation, boundary prediction and
edge orientation prediction; (2) a vertex selection module for transforming the network outputs into valid polygon vertices; (3) a vertex refinement network for automatically
adjusting the selected valid vertices to more accurate locations.
pixel. Girard et al. (2021) introduced a frame field learning task for
polygonal building segmentation, of which the pixel-wise frame field is
represented as two directions encoded by complex numbers.

Unlike the above direction-related tasks that were introduced for
improving the segmentation boundary, the edge orientation proposed
by our method is defined as a different representation and designed
for generating valid polygon vertices, which is crucial for the further
integration of the pixel-wise segmentation model and the graph-based
refinement model.

3. Method

As shown in Fig. 1, the overall pipeline of our proposed method
contains three main components, i.e., a pixel-wise multi-task network,
a rule-based vertex selection module, and a graph-based vertex refine-
ment network. Taking a satellite image cropped by a single object as
input, the multi-task network is designed for building area segmen-
tation, building boundary prediction, and edge orientation prediction.
Then the vertex selection module effectively leverages the three types
of network outputs to transform the segmentation mask into a set of
valid polygon vertices. Finally, the vertex refinement network regards
the valid polygon vertices as the initial nodes of a graph representation
and predicts a displacement for each node, which automatically adjusts
the valid polygon vertices to more accurate locations. In the following,
we first introduce the design of our proposed multi-task network in 3.1,
including the definitions of edge orientation, network architecture and
training. Then we introduce the vertex selection module and the vertex
refinement network in Sections 3.2 and 3.3. The implementation details
are introduced at the end of this section.

3.1. Multi-task learning with edge orientation

We design a pixel-wise multi-task network to learn both semantic
and geometric information of building polygons via three different
tasks, i.e. building segmentation, boundary prediction, and edge ori-
entation prediction. The representation of our proposed edge orienta-
tion property and the network architecture for multi-task learning are
introduced as follows.

3.1.1. Representation of edge orientation
Building segmentation and boundary prediction are common tasks

in existing building extraction methods. In addition to these tasks,
we introduce an extra task to learn the geometric information of
building polygons, i.e. edge orientation prediction, which is beneficial
for building footprint extraction in many aspects (Li et al., 2021c). We
use the normal vector of each edge to calculate the orientation values.
The original building footprint annotations are converted into the
representation of edge orientation according to the following method.

Let 𝐼 denote an input image and 𝐸 the edges of a building footprint
annotation. For a pixel 𝑖 that belongs to edge 𝐸(𝑗), its orientation angle
𝛼 is determined by the normal vector of edge 𝐸(𝑗), which is denoted by
29

𝑖

Fig. 2. Representation of edge, vertex and edge orientation. The green lines and black
points in (b) denote the edges and vertices. Different colors in (c) denote different edge
orientation classes.

𝑁(𝐸𝑗 ). Specifically, the orientation angle 𝛼𝑖 of pixel 𝑖 is defined as the
angle between the normal vector 𝑁(𝐸𝑗 ) and the gravity orientation 𝐺
in a counter-clockwise direction. In our method, the orientation angle
𝛼𝑖 is further discretized into the orientation class 𝑦𝑜(𝑖), which is divided
into 𝐾 categories. For each pixel, the orientation class 𝑦𝑜(𝑖) is an integer
in the range of [0, 𝐾]. If pixel 𝑖 does not belongs to any building edges,
then its orientation class 𝑦𝑜(𝑖) equals zero; If pixel 𝑖 is located at the
building corners, then we assign 𝑦𝑜(𝑖) with one of its neighboring edges.
In this way, each edge of a building footprint 𝐸𝑗 is assigned with an
orientation property, and the edge orientation of each pixel can be
annotated as one of 𝐾 + 1 classes (see Fig. 2).

3.1.2. Network architecture and training
The goal of our multi-task network is to learn both semantic and

geometric information of building footprints. Many existing building
segmentation studies are based on semantic segmentation models (such
as U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan et al.,
2017), and other encoder–decoder architectures) or instance segmen-
tation models (such as Mask-RCNN (He et al., 2017)). In our previous
work (Li et al., 2021c), a modified Res-U-Net architecture is employed
to guarantee the consistency of segmentation map for comparison
with (Li et al., 2020). Inspired by a recent study (Li et al., 2021a), we
adopt the High-Resolution Network (HR-Net) (Wang et al., 2020) as the
backbone architecture of our multi-task network in this study, of which
the capacity of maintaining high-resolution representations through-
out the whole process is important and beneficial for our building
segmentation task.

As shown in Fig. 1, our HR-Net-based segmentation network is
designed for three different tasks: (1) building area segmentation; (2)
building boundary prediction; (3) edge orientation prediction. Each
task is formulated as a pixel-wise classification problem and trained
with the cross entropy loss (denoted by 𝐿) according to formula (1):

𝐿 = −
𝑁
∑

𝑖=1

𝐾
∑

𝑘=1
𝑦𝑖,𝑘 × 𝑙𝑜𝑔(𝑝(𝑦𝑖,𝑘)) (1)

where 𝐾 is the number of classes of the corresponding task; 𝑁 is the
number of pixels of an image; 𝑦 is a binary indicator that equals 1 if
𝑖,𝑘
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Fig. 3. The overall framework of vertex refinement network, including a ResNet-
based backbone for vertex embedding and a GGNN-based propagation model for vertex
correction.

𝑘 is the ground truth label of pixel 𝑖 or 0 in other cases; 𝑝(𝑦𝑖,𝑘) is the
predicted probability that pixel 𝑖 belongs to class 𝑘. The total loss 𝐿𝑡𝑜𝑡𝑎𝑙
of the three tasks can be summarized as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑠𝑒𝑔 + 𝜆2𝐿𝑏𝑜𝑢 + 𝜆3𝐿𝑜𝑟𝑖 (2)

where 𝐿𝑠𝑒𝑔 , 𝐿𝑏𝑜𝑢 and 𝐿𝑜𝑟𝑖 represent the loss of building area seg-
mentation, boundary prediction, and edge orientation prediction; 𝜆1,
𝜆2 and 𝜆3 are the weight of each task. The multi-task network will
be trained jointly to produce different types of prediction maps. The
input image for network training is cropped by a bounding box that
is corresponding to a single building instance. The hyper-parameter
setting of our segmentation network will be introduced in Section 3.4.

3.2. Vertex selection module

We design a simple but effective vertex selection module for trans-
forming the segmentation mask into polygon vertices. Due to the
non-nadir views of satellite images, there is misalignment between
the building annotations and the actual building outlines, resulting
in challenges for directly predicting the accurate vertices or edges
of a building polygon (Wang et al., 2022). However, even with the
misalignment between annotated and actual building edges, the edge
orientation predicted by the multi-task network is still capable of pro-
viding effective geometric information and characterizing the topology
of a building polygon.

The vertex selection module aims at filtering out the redundant
vertices and remain the valid ones, based on the three types of net-
work outputs. First, we extract the pixel coordinates on the contour
of the segmentation mask via dense sampling, and select the pixel
coordinates of which the boundary prediction probability is larger than
a given threshold 𝑡𝑏𝑜𝑛, constituting a set of initial vertex candidates
𝐶 = {𝑐0, 𝑐1, 𝑐2,… , 𝑐𝑛}. We use 𝑦𝑜𝑟𝑖(𝑐𝑖), (𝑖 ∈ {0, 1, 2,… , 𝑛}) to denote
the edge orientation class (predicted by the multi-task network) for
each vertex candidate in 𝐶, and use 𝑦𝑣𝑒𝑟(𝑐𝑖), (𝑖 ∈ {0, 1, 2,… , 𝑛}) to
indicate whether 𝑐𝑖 is selected as a valid vertex (𝑦𝑣𝑒𝑟(𝑐𝑖) = 1) or not
(𝑦𝑣𝑒𝑟(𝑐𝑖) = 0). A candidate 𝑐𝑖 will be selected as a valid vertex only if
the absolute difference between 𝑦𝑜𝑟𝑖(𝑐𝑖) and 𝑦𝑜𝑟𝑖(𝑐𝑖−1) is greater than or
equal to a given threshold 𝑡𝑜𝑟𝑖, constituting the output vertex set 𝑉 . The
selection rule is defined according to the prior knowledge, which can
be summarized as follows:

𝑦𝑣𝑒𝑟(𝑐𝑖) =
{

1, if 𝑦𝑜𝑟𝑖(𝑐𝑖) − 𝑦𝑜𝑟𝑖(𝑐𝑖−1) ≥ 𝑡𝑜𝑟𝑖
0, if 𝑦𝑜𝑟𝑖(𝑐𝑖) − 𝑦𝑜𝑟𝑖(𝑐𝑖−1) < 𝑡𝑜𝑟𝑖

(3)
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3.3. Vertex refinement network

The output vertex set 𝑉 obtained from the vertex selection mod-
ule contains only valid polygon vertices. Inspired by previous single
object segmentation methods (Liang et al., 2019b; Acuna et al., 2018;
Ling et al., 2019), we design a vertex refinement network (VRN) to
further improve the vertex prediction accuracy. As shown in Fig. 3,
VRN contains two main components: (1) a ResNet-based backbone for
vertex embedding, which extracts the features of the input image and
vertices for further vertex correction; (2) a GGNN-based propagation
model for vertex correction, which learns to predict a displacement for
each vertex in order to move it to more accurate location. Note that
the ResNet-based backbone and the GGNN-based propagation model
are trained together in an end-to-end manner. The details of each
component are introduced as follows.

3.3.1. Backbone and vertex embedding
The backbone architecture of VRN is a variant of ResNet-50 (He

et al., 2016) following Li et al. (2021c), Acuna et al. (2018), Ling et al.
(2019), which employs a skip-connection structure to upsample and
concatenate the feature maps obtained from four skip layers, consti-
tuting the final feature map for vertex embedding. For the final feature
map with a larger size, the vertex coordinates can be represented more
precisely due to the higher resolution of the feature map. On the other
hand, for the final feature map with a smaller size, a grid often has
a larger receptive field, which benefits the displacement prediction for
each vertex. Taking both aspects into consideration, the size of the final
feature map of the backbone is set as half of the original size of the
input image.

Besides taking the cropped satellite image as input, which is the
same as the multi-task network, VRN also requires a set of vertex
coordinates as extra inputs. As mentioned previously, the segmentation
mask obtained from the multi-task network is converted into a set
of valid polygon vertices by VSM. These vertices are then mapped
to the final feature map of the ResNet backbone according to their
coordinates, which are represented by the red points on the volume
of Fig. 3. In the vertex embedding process, each vertex is assigned with
a feature vector, which is extracted from the volume in the channel
direction.

3.3.2. Propagation model based on GGNN
In our proposed VRN, the building polygon is represented in a

graph format. Each vertex obtained from VSM constitutes the node
and each neighboring vertex pair constitutes the edge. Inspired by
previous work (Acuna et al., 2018; Li et al., 2021c), the propagation
model for vertex correction is based on the gated graph neural network
(GGNN) (Li et al., 2015). Different from the pixel-wise segmentation
network, the GGNN-based propagation model is capable of utilizing
extra information such as the feature of each node (vertex) and the
relation between each node of the graph. In addition, we add two
fully-connected layers to GGNN, which outputs a value indicating the
predicted displacement of each node.

During the training phase, the target of the GGNN is to learn the
displacement between each valid polygon vertex (the output of VSM)
and its nearest ground truth vertex. The whole process is formulated
as a classification problem and trained with the cross entropy loss.
Since the vertices selected by VSM are already close to the building
corners, we use a fixed range of [−𝑘, 𝑘] to adjust the vertices in 𝑥 and
𝑦 directions. Within this range, each case of displacement coordinates
(𝛿𝑥, 𝛿𝑦) is encoded as a class value, constituting (2𝑘 + 1)2 categories
in total. The whole training process is much easier compared with
regression without a range limitation. The class value predicted by
VRN is further converted into the displacement coordinates, and added
to the corresponding vertex coordinates of VSM to produce the final
prediction results. In this way, the GGNN-based VRN automatically
moves the polygon vertices to more accurate locations in the inference
phase.
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3.4. Implementation details

For our multi-task network, the numbers of channels in the four
stages of HR-Net are set as 24, 48, 96, and 192, respectively. For
the training dataset, each input image cropped by the bounding box
is resized to 224 × 224 pixels following Acuna et al. (2018), Ling
et al. (2019) to guarantee a fair comparison. The weights of three tasks
(𝜆1, 𝜆2, 𝜆3) are simply set as 1. The value of 𝐾 for edge orientation
prediction is set as 36, indicating that the bin width of the edge
orientation angle is 10. For the vertex selection module, we set the
value of 𝑡𝑜𝑟𝑖 as 3 since the angle between two edges of a building
polygon could rarely be greater than 150 or smaller than 30 in the
actual scenario according to prior knowledge, and set the boundary
probability threshold 𝑡𝑏𝑜𝑛 as 0.5. In this way, redundantly selecting the
invalid polygon vertices due to edge orientation prediction noises and
mistakenly removing the valid polygon vertices can be avoided in a
balanced manner. For the ResNet backbone of the vertex refinement
network, the number of channels of the final feature map for vertex
embedding is set as 256. The dimension sizes of the two fully-connected
layers of the GGNN-based propagation model are also set as 256. In
addition, we set the vertex moving range as [−7,+7] pixels, and set the
output dimension of two fully-connected layers as 225, accordingly.

4. Experimental settings

4.1. Datasets

Various building datasets have been used in previous building seg-
mentation studies, of which most datasets only provide ground truth
masks without the coordinates of polygon vertices, such as ISPRS
semantic labeling datasets (Paisitkriangkrai et al., 2016), ARIS (Chen
et al., 2018b), etc. To ensure the network training and accurate eval-
uation of the polygon vertex, we evaluate our proposed method using
SpaceNet building footprint dataset (SpaceNet) (Van Etten et al., 2018)
and Microsoft US building footprint dataset (MSUS) (Microsoft, 2022).
Both datasets provide specific geographic information (e.g. the lon-
gitude and latitude of each vertex) in GeoJson format, so that it
could be flexibly used as the annotation for remote sensing images of
different resolutions and sizes. In addition, we conduct experiments on
Inria Aerial Image Labeling Dataset (Inria-building) (Maggiori et al.,
2017), which has been used in several recently proposed methods for
polygon-based building extraction (Xu et al., 2022; Girard et al., 2021).
Following these methods, we convert the initial mask annotations of
Inria-building dataset into the pixel coordinates of polygon vertices for
the training and evaluation of different polygon-based methods. The
details of each dataset are introduced as follows.

The SpaceNet building dataset contains satellite images and build-
ing footprints of several cities located in different continents. We
select all annotated building instances of Las Vegas for evaluating the
polygon vertex, of which most buildings are annotated in a unified and
consistent standard (compared with other cities) (Wu et al., 2022). The
dataset of Las Vegas contains 3,851 images (in 650 × 650 pixels, with
a spatial resolution of 0.3 m) and around 108,000 manually annotated
building footprints. The MSUS building dataset contains over a hundred
million computer-generated building footprints in all 50 US states,
with better or similar metrics compared to OpenStreetMap building
metrics against the labels. As the dataset only provides the building
polygons without original images, we download the corresponding
Google Earth high-resolution images. The dataset of Salt Lake City
(SLC) contains 500 images (in 2048 × 2048 pixels, with a spatial
resolution of about 0.6 m) and around 150,000 building footprints. The
Inria building dataset (Maggiori et al., 2017) contains 180 large-scale
satellite images (in 5000 × 5000 pixels, with a spatial resolution of
about 0.3 m) and over 20,0000 annotated buildings that are located
in five cities. Compared with the above two datasets, Inria-building
dataset is more challenging in many aspects. Many buildings are with
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holes, i.e., one building may contain multiple polygon contours. The
distribution pattern is more diverse, including sparse and dense build-
ing areas. Moreover, there are more buildings with serious parallax
effect, i.e., the footprint annotation has a deviation from the roof.
These challenges enables analyzing the performance of our method in
different complex cases.

For Vegas and SLC datasets, the whole datasets are randomly di-
vided into training/validation/test images using a ratio of 8:1:1 fol-
lowing Li et al. (2021c). For the Inria-building dataset, we divide the
whole dataset into train, validation and test sets with the ratio of
6:2:2 following Xu et al. (2022). Each large-scale image is cropped by
the ground truth (GT) bounding box corresponding to each building
instance during both training and inference phase following the existing
single building extraction methods (Liu et al., 2022; Chen et al., 2020;
Marcos et al., 2018; Cheng et al., 2019; Xu et al., 2022; Gur et al.,
2020). Each cropped image is further uniformly resized into 224 × 224
pixels following Acuna et al. (2018), Ling et al. (2019), constituting the
input images of our proposed building segmentation method. When we
obtain the output building polygons for each dataset or method, the
predicted vertex coordinates relative to the cropped image are further
transformed into those relative to the large-scale image, constituting
the final large-scale building extraction results.

4.2. Comparison methods

In this study, to precisely evaluate the polygonal segmentation per-
formance of each building instance, we compare our method with an-
other three polygonal segmentation methods, i.e., Polygon-RNN (Cas-
trejon et al., 2017), Polygon-RNN++ (Acuna et al., 2018) and Curve-
GCN (Ling et al., 2019), which are the state-of-the-art for polygonal
single object segmentation and have been broadly used as the compar-
ison methods in recent single building extraction studies (Liu et al.,
2022; Huang et al., 2021; Chen et al., 2020). We also provide the
experimental results of the multi-task HR-Net model (Wang et al.,
2020). The raster segmentation results are converted into polygon
vertices using the Douglas–Peucker algorithm (Wu and Marquez, 2003)
following Li et al. (2021c) for vertex performance evaluation, which
will be introduced in Section 5.1. To ensure a fair comparison, we
carefully evaluate different settings and strategies of the comparison
methods, and optimize these methods in order to fit the characteristics
of the building segmentation task. For Polygon-RNN, we use the resid-
ual encoder with skip-connection following Acuna et al. (2018), which
obtains better performance compared with the original VGG encoder.
For Polygon-RNN++, results demonstrate that using an evaluator with
beam search improves the prediction performance, while reinforce-
ment learning and upscaling with a graph neural network deteriorate
the prediction results. Thus we did not apply these two strategies to
Polygon-RNN++ in our building segmentation task. For Curve-GCN, we
adopt the Polygon-GCN instead of Spline-GCN as the buildings are line-
based objects. Considering the actual distribution of vertex numbers,
we set the number of the vertex as 20. Additionally, we use the point
matching loss (using 𝐾 = 1280 for sampling points following Ling et al.
(2019)) as it obtains better results compared with the differentiable
accuracy loss for our task. The detailed qualitative and quantitative
comparisons with the above methods will be introduced in Section 5.1.

In addition to the above methods, we compare our proposed method
with some recently proposed methods that are dedicated for polygon-
based building extraction, i.e., CVNet (Xu et al., 2022), Frame Field
Learning (Girard et al., 2021), and our previous work (Li et al., 2021c).
As CVNet (Xu et al., 2022) uses a fixed number of polygon vertices
like Curve-GCN (Ling et al., 2019), we reduce the number of the vertex
from 60 (by default) to 20 to improve the vertex prediction scores while
maintaining a relatively high IoU and boundary score. For FFL (Girard
et al., 2021), we select the Inria polygonized dataset, Frame Field
polygonization, Active Contour Model from the provided datasets and
models for comparison with our proposed method. For our previous
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Table 1
The overall results of Vegas dataset obtained from Polygon-RNN (Castrejon et al.,
2017), Polygon-RNN++ (Acuna et al., 2018), Polygon-GCN (Ling et al., 2019), HR-Net
+ DP (Wang et al., 2020). The results are evaluated in terms of IoU, Boundary F-score
(B-F-score), and Vertex F-score (V-F-score).

Method IoU B-F-score V-F-score

Polygon-RNN (Castrejon et al., 2017) 0.8676 0.8346 0.6882
Polygon-RNN++ (Acuna et al., 2018) 0.8758 0.8441 0.6875
Polygon-GCN (Ling et al., 2019) 0.8871 0.8559 0.2759
HR-Net + DP (Wang et al., 2020) 0.8804 0.8486 0.6240
Ours 0.8862 0.8635 0.7172

Table 2
The overall results of SLC dataset obtained from Polygon-RNN (Castrejon et al., 2017),
Polygon-RNN++ (Acuna et al., 2018), Polygon-GCN (Ling et al., 2019), HR-Net +
DP (Wang et al., 2020). The results are evaluated in terms of IoU, Boundary F-score
(B-F-score), and Vertex F-score (V-F-score).

Method IoU B-F-score V-F-score

Polygon-RNN (Castrejon et al., 2017) 0.8623 0.8976 0.8001
Polygon-RNN++ (Acuna et al., 2018) 0.8671 0.9006 0.7967
Polygon-GCN (Ling et al., 2019) 0.8805 0.9089 0.2862
HR-Net + DP (Wang et al., 2020) 0.8743 0.8932 0.7294
Ours 0.8771 0.9114 0.8015

work (Li et al., 2021c), we use the default experimental settings on
SpaceNet-Vegas dataset. Besides the original results of our previous
work using GT bounding boxes (denoted by ours (gt-bbox)), we also
provide the results using predicted bounding boxes (denoted by ours
(pr-bbox)). Note that the predicted bounding boxes are generated from
the segmentation mask of the multi-task network of Li et al. (2021c).
The detailed qualitative and quantitative comparisons with the above
methods will be introduced in Section 5.2.

4.3. Evaluation metrics

We use three evaluation metrics to measure the prediction perfor-
mance, i.e., IoU, boundary F-score (denoted by B-F-score), and vertex
F-score (denoted by V-F-score). For each metric, we calculate the mean
value of each building instance. IoU (Intersection over Union) has
been widely used for evaluating segmentation results in previous object
segmentation studies (Acuna et al., 2018; Ling et al., 2019). Boundary
F-score is also a common metric for evaluating object segmentation
boundaries. Similar to Ling et al. (2019) and Cheng et al. (2019),
we calculate the Boundary F-score according to Perazzi et al. (2016),
which calculates the precision and recall between the boundary of
the predicted polygon and GT polygon. Moreover, we adopt a vertex
evaluation metric following Homayounfar et al. (2018), Liang et al.
(2019a), Chen et al. (2020), Li et al. (2021c) to calculate the precision,
recall, and F-score between the predicted vertex set and GT vertex set.
The boundary and vertex F-scores are measured using the threshold of
2 and 3 pixels, which can precisely reflect the performance of vertex
prediction and polygonal object segmentation.

5. Experimental results and analysis

5.1. Comparison with state-of-the-art methods for polygonal single object
segmentation

Tables 1 and 2 list the overall results of Vegas and SLC obtained
from different methods. To further analyze the vertex prediction perfor-
mance in detail, Table 3 provides additional vertex evaluation metrics
of the Vegas dataset, including the precision, recall, and F1-score with
the threshold of 2 and 3 pixels (denoted by V-P @2pix, V-R @2pix, V-F
@2pix, V-P @3pix, V-R @3pix, and V-F @3pix). In general, for both
Vegas and SLC datasets, our method achieves the best performance
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among all methods in terms of the boundary F-score and all vertex
metrics. For the vertex evaluation metrics, our method achieves a V-F-
score improvement of 3%–4% compared with the second highest score.
Regarding the IoU evaluation metric, although Polygon-GCN obtains a
slightly higher IoU of 0.09% and 0.34%, its vertex F-scores are 44.13%
and 51.53% lower than ours on Vegas and SLC dataset, respectively.
This fatal shortage makes Polygon-GCN barely a usable method for
polygonal building segmentation in practical scenarios. In addition,
the building polygons of the Vegas dataset are carefully annotated
by human annotators, which have a more complex structure (with
finer vertices and edges) compared with the computer-generated SLC
dataset. Compared with the state-of-the-art methods, the performance
improvement of our method is more obvious on the Vegas dataset than
the SLC dataset, which also verifies the superiority of our proposed
method for complicated cases.

To qualitatively evaluate the performance of different methods, we
further provide the building segmentation results of our method and
comparison with Polygon-GCN and Polygon-RNN++, which achieve
relatively higher performance among all comparison methods. Fig. 4
shows some examples of the Vegas and SLC dataset, respectively.
Polygon-RNN++ obtains promising results for simple buildings with
a small number of vertices, but the results deteriorate seriously for
buildings with large size or complex contour. Specifically, the failure
cases of the former prediction (such as missing vertices) can result
in consecutive errors on the latter prediction, due to the sequential
prediction order of the recurrent model. For Polygon-GCN, the pre-
dicted vertices scatter on the boundary of buildings instead of clustering
around the corners. As the number of predicted vertices is fixed, it
usually results in redundant vertices for buildings with simple contours
(e.g. the fourth row of Fig. 4) and insufficient or inaccurate vertices for
buildings with complex contours (e.g. the second row of Fig. 4). For
both Vegas and SLC datasets, our method shows obvious advantages
over Polygon-RNN++ and Polygon-GCN, especially for buildings with
large size or complex contour.

5.2. Comparison with dedicated methods for polygon-based building extrac-
tion

In this section, we provide the detailed qualitative and quantitative
comparisons with three dedicated methods for polygon-based building
extraction, i.e. CVNet (Xu et al., 2022), FFL (Girard et al., 2021) and our
previous work (Li et al., 2021c). Fig. 5 and Table 4 show the qualitative
and quantitative comparisons between our method and CVNet (Xu
et al., 2022) and FFL (Girard et al., 2021) methods. We provide the
results comparison on inria-building dataset, which is a challenging
dataset that has been used in CVNet (Xu et al., 2022) and FFL (Girard
et al., 2021). Both qualitative and quantitative results demonstrate the
advantages of our proposed PolyCity compared with CVNet (Xu et al.,
2022) and FFL (Girard et al., 2021) methods. Although FFL (Girard
et al., 2021) produces building polygons with accurate boundaries in
most cases, there are many redundant polygon vertices in the prediction
results. Meanwhile, the adjacent buildings are always regarded as an
entirety and cannot be extracted separately. For the buildings with
holes, FFL (Girard et al., 2021) fails to extract every inner contour
in most cases. Similar to Polygon-GCN, CVNet (Xu et al., 2022) uses
a fixed number of polygon vertices for all buildings. For buildings
with simple contours, the prediction results of CVNet (Xu et al., 2022)
usually have redundant polygon vertices. Moreover, the performance
drops seriously for buildings with complex contours, producing build-
ing polygons with insufficient vertices and inaccurate shapes. The
above limitations result in the low vertex prediction scores especially
for the vertex precision. Compared with CVNet (Xu et al., 2022) and
FFL (Girard et al., 2021), our method is more capable of extracting
adjacent buildings individually and extracting every inner contour for
buildings with holes, producing building polygons with more accurate
shape and vertices. The quantitative results also show that our method

achieves the best performance in terms of IoU and all vertex metrics
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Fig. 4. Results comparison of different methods on SpaceNet-Vegas and MSUS-SLC datasets. The red points and yellow lines denote the vertices and edges of the building polygons
predicted by different methods.
(with a slight drop of B-F-score compared with FFL (Girard et al.,
2021)), and significantly improves the vertex prediction scores by over
14%.

Fig. 6 and Table 5 show the qualitative and quantitative compar-
isons between our PolyCity and our previous work (Li et al., 2021c).
We conduct experiments on the SpaceNet-Vegas dataset, which was
also used in our previous work (Li et al., 2021c). We also provide
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some large-scale building extraction results of our PolyCity in Fig. 7.
The first row of Table 5 shows the results obtained from our previous
work (Li et al., 2021c). In the second row, i.e., ours (pr-bbox), we
provide the results of our method using predicted bounding boxes,
which are generated from the segmentation mask of the multi-task
network of Li et al. (2021c). In the third row, i.e., ours (gt-bbox), we
provide the original results of our method using GT bounding boxes. We
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Table 3
The detailed vertex prediction performance of the Vegas dataset obtained from different methods, in terms of Vertex Precision (V-P), Vertex Recall (V-R), and
Vertex F-score (V-F).

Method V-P @2pix V-R @2pix V-F @2pix V-P @3pix V-R @3pix V-F @3pix

Polygon-RNN (Castrejon et al., 2017) 0.4662 0.4259 0.4451 0.7183 0.6606 0.6882
Polygon-RNN++ (Acuna et al., 2018) 0.4511 0.4310 0.4408 0.7079 0.6683 0.6875
Polygon-GCN (Ling et al., 2019) 0.0931 0.2976 0.1418 0.1879 0.5194 0.2759
HR-Net + DP (Wang et al., 2020) 0.4274 0.4182 0.4227 0.6312 0.6169 0.6240
Ours 0.5133 0.4641 0.4885 0.7606 0.6785 0.7172
Fig. 5. Qualitative comparison with CVNet (Xu et al., 2022) and FFL (Girard et al.,
2021). The red points and yellow lines denote the vertices and edges of the building
polygons predicted by different methods.

Fig. 6. Qualitative comparison with our previous work (Li et al., 2021c). The red points
and yellow lines denote the vertices and edges of the building polygons predicted by
different methods.

can find that ours (gt-bbox) achieves the best performance in terms of
all evaluation metrics, which is followed by ours (pr-bbox). The vertex
prediction score is significantly improved by 6% compared with our
previous work. From the qualitative comparison of Fig. 6, we can also
find that our proposed outperforms our previous work in many aspects.
PolyCity improves the polygonization performance on small buildings
owing to the provided GT bounding box, which is also benefitted from
the fact that the cropped image of the small building is resized to a
larger image as the network input. In addition, the polygonal building
extraction results of PolyCity (whether using GT or predicted bounding
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Table 4
Quantitative comparison with CVNet (Xu et al., 2022) and FFL (Girard et al., 2021)
on Inria-building dataset. The results are evaluated in terms of IoU, Boundary F-score
(B-F-score), Vertex F-score (V-F-score), Vertex Precision (V-P @3pix), and Vertex Recall
(V-R @3pix).

Method IoU B-F-score V-F-score V-P @3pix V-R @3pix

CVNet (Xu
et al., 2022)

0.7887 0.4032 0.1515 0.1079 0.2543

FFL (Girard
et al., 2021)

0.7814 0.6171 0.3895 0.3219 0.4929

Ours 0.8040 0.6115 0.5315 0.5728 0.4958

Table 5
Quantitative comparison with our previous work (Li et al., 2021c) on SpaceNet-Vegas
dataset. The results are evaluated in terms of IoU, Boundary F-score (B-F-score), Vertex
F-score (V-F-score), Vertex Precision (V-P @3pix), and Vertex Recall (V-R @3pix).

Method IoU B-F-score V-F-score V-P @3pix V-R @3pix

Li et al. (2021c) 0.8655 0.8501 0.6537 0.6950 0.6170
Ours (pr-bbox) 0.8672 0.8524 0.6819 0.7316 0.6386
Ours (gt-bbox) 0.8862 0.8635 0.7172 0.7607 0.6785

box) has finer boundary with more accurate short edges, which is owing
to the usage of HR-Net (instead of Res-U-Net) on cropped and resized
input images (instead of the complete large input images).

5.3. Evaluation of each module

Table 6 lists the performance of each module evaluated on Vegas
and SLC datasets, in terms of IoU, B-F-score, and V-F-score. The first
row shows the prediction performance of the multi-task learning stage.
To enable a fair comparison in terms of all metrics, the mask contour
obtained from the pixel-wise multi-task network is converted into poly-
gon vertices through the Douglas–Peucker algorithm (Wu and Marquez,
2003) following the same manner as Li et al. (2021c). The second row
shows the results obtained from the vertex selection module (VSM),
while the third row shows the final results obtained from the vertex
refinement network (VRN).

Experimental results show that the vertex selection module im-
proves the prediction performance of baseline results in terms of all
evaluation metrics. Through effectively leveraging the multi-task net-
work outputs to filter out the redundant polygon vertices and remain
the valid polygon vertices, the vertex selection module achieves a
better vertex prediction performance while maintaining a high IoU
and Boundary F-score of the polygon, indicating the effectiveness of
VSM and its superiority to Douglas–Peucker algorithm. Moreover, VRN
further promotes the prediction performance and significantly improves
the vertex F-scores by 7.81% and 4.59%, which is achieved via adjust-
ing the valid polygon vertices generated from VSM to more accurate
places. From the qualitative comparison shown in Fig. 8, we can also
find the visual improvement of the predicted building polygons after
using the vertex refinement network.

5.4. Evaluation of robustness to bbox noise

In our previous experiments, the input image of each building
instance is cropped by bbox without noise, which is obtained via enlarg-
ing the ground truth polygon by a fixed value of 15% following Acuna



ISPRS Journal of Photogrammetry and Remote Sensing 201 (2023) 26–37W. Li et al.
Fig. 7. Building extraction results of PolyCity in large-scale areas. PolyCity generates vector building footprints with accurate vertices, edges, and shapes even for complex scenes.
Fig. 8. Qualitative comparisons of the predicted building polygons before and after
the vertex refinement network.

et al. (2018), Ling et al. (2019). In this section, we further evaluate and
compare the robustness of different methods to bbox noise.

Table 7 shows the results of the Vegas dataset obtained from dif-
ferent methods, when provided with GT bounding boxes in different
scales. Specifically, the side length of a GT bounding box is enlarged
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Table 6
The performance of each module on Vegas and SLC datasets, in terms of IoU, B-F-score,
and V-F-score.

Dataset Method IoU B-F-score V-F-score

Vegas
Baseline 0.8804 0.8486 0.6240
+ VSM 0.8836 0.8493 0.6391
+ VRN 0.8862 0.8635 0.7172

SLC
Baseline 0.8743 0.8932 0.7294
+ VSM 0.8751 0.8967 0.7556
+ VRN 0.8771 0.9114 0.8015

Table 7
Evaluation of robustness to bbox noise, in terms of IoU, B-F-score, and V-F-score.

Noise level Methods IoU B-F-score V-F-score

None
Polygon-RNN++ 0.8758 0.8441 0.6875
Polygon-GCN 0.8871 0.8559 0.2759
Ours 0.8862 0.8635 0.8015

Moderate
Polygon-RNN++ 0.8655 0.8197 0.6301
Polygon-GCN 0.8816 0.8451 0.2869
Ours 0.8799 0.8609 0.6978

Large
Polygon-RNN++ 0.8395 0.7608 0.5357
Polygon-GCN 0.8596 0.7845 0.2709
Ours 0.8729 0.8453 0.6709

by: (1) a fixed value of 15% (No noises); (2) a random value in the
range of 15% to 30% (Moderate noise); (3) a random value in the
range of 10% to 50% (Large noise). For all cases, our method achieves
better boundary F-scores and Vertex F-scores compared with Polygon-
RNN++ and Polygon-GCN. Although Polygon-GCN shows a slightly
higher IoU (smaller than 0.2%) in the first two cases, its vertex F-
scores are significantly lower than our method. Results demonstrate the
superiority of our method regarding the robustness to bounding box
noise compared with state-of-the-art methods.
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Fig. 9. Extraction results of our method for buildings with holes.

Fig. 10. Typical failure cases of our method on different datasets.

5.5. Complex case analysis

In this section, we analyze the performance of our method for
extracting building polygons in complex scenarios. Fig. 9 shows the
results of our method for buildings containing multiple polygons (with
holes). In our method, the inner and outer contours corresponding
to the same building are processed individually for both vertex se-
lection and vertex refinement modules. Consequently, the complex
multi-polygon cases can be effectively handled using our proposed
method. Although the proposed method achieves promising building
extraction results and outperforms state-of-the-art methods in many
aspects, there are still some failure cases that should be further im-
proved. Fig. 10 provides some typical failure cases obtained from our
proposed method. First, for buildings with curved walls, our method
can only predict the general shape of the contour and the performance
is worse than those without curved walls (see Fig. 10-(e)(f)). Second,
our method has difficulty in precisely extracting the footprint polygons
for off-nadir buildings, in which a portion of polygon vertices are
invisible due to the parallax effect (see Fig. 10-(b)). Moreover, for
some extremely challenging cases, e.g., buildings that are seriously
sheltered by trees (see Fig. 10-(a)), buildings with a large number of
short edges (see Fig. 10-(d)),infrequent shapes and appearance (see
Fig. 10-(c)(e)(f)), etc., the prediction results of our method are still not
accurate enough and require further improvements in our future work.

6. Conclusions

In this work, we have presented an effective approach for extracting
building polygons from high-resolution remote sensing images, which
solves the limitations of existing polygonal object segmentation meth-
ods and produces vector buildings that are in a desirable format for
actual applications. The complete building segmentation pipeline of
our proposed approach contains the following three components. First,
a multi-task deep neural network is designed for pixel-wise building
36
segmentation, boundary prediction and edge orientation prediction.
Second, a vertex selection module is proposed for transforming the
segmentation mask into valid polygon vertices using the three types of
network outputs and prior knowledge-based selection rules. Finally, a
graph-based vertex refinement network is designed for further adjust-
ing the valid polygon vertex coordinates to more accurate locations,
producing the final vector buildings with more precise vertices, edges
and shapes.

We conduct substantial experiments on two large-scale building
extraction datasets, i.e., the Las Vegas dataset of SpaceNet challenge
and the SLC dataset of Microsoft US building footprints. Results show
that our approach achieves promising prediction accuracy in terms
of IoU and boundary scores, and improves the vertex scores by 3%–
4% compared with current state-of-the-art methods. We also provide
a detailed analysis of the effect of each module, the robustness to
bounding box noise, and the typical failure cases of the proposed
method. In our future work, we would like to design new strategies
and methods to further improve the polygonal building segmentation
performance, such as improving the network architecture and multi-
task learning strategies, using the instance segmentation models, etc.
We will also improve the proposed method and apply it to larger-scale
study areas and cross-city application scenes.
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