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Abstract—The problem of finding mutual X is essential in
mining and analysis of complex social networks. X can be user’s
public data such as friends, education information, etc. However,
massive social networks pose a significant challenge at this prob-
lem as these networks consist of billions of nodes and hundreds
of billions of edges. This paper presents a high-performance
and memory-efficient solution for finding mutual X in social
networks with billions of users, with three main contributions.
First, a distributed algorithm for finding mutual X; second, an
intra-node optimization strategy including pipelined workflow,
NUMA-aware sub-partitioning, and Dual Sliding Window set
intersection algorithm based on SIMD; third, a semicircular
computing and communication scheme to further improve inter-
node performance and avoid load imbalance. Our design is well
validated using multiple real-world datasets, and it takes less than
10 minutes to find all mutual X in the WeChat social network.
Compared with existing industrial solutions based on GraphX, we
achieve 22-36× speedup and 36× memory reduction. Compared
with PowerGraph, our solution achieves 12.7× speedup and 11×
memory reduction.

Index Terms—Distributed Graph Computing, High Perfor-
mance Computing, Big Data

I. INTRODUCTION

Graph is a powerful abstraction for representing underlying

relations in large unstructured datasets, such as social networks

[22], web graph [11], biological networks [16], etc. In the

era of big data, graphs are getting larger and larger. For

example, WeChat, one of the most famous social network

services, owns a lot of daily active users and they form a

huge friendship network. It becomes increasingly challenging

to discover and analyze meaningful information from massive

networks. Therefore, graph processing in massive networks

is gaining more and more attention in both academic and

industrial communities [17], [18].

Recently, several graph data mining problems are inten-

sively studied in social networks [2], [14], [24]. Specifically,

the problem of finding mutual X is often regarded as one of

the most fundamental data mining problems. It can be mutual

friends, mutual interests, or mutual school of graduation of

two persons. The results of finding mutual X is widely used

as a building block in many businesses, such as user profile

construction [1], social recommendation [32], social network

marketing [28], and so on. However, there are few algorithms

customized for finding mutual X in massive social networks.

The massive social networks such as Facebook and WeChat

pose a significant challenge in finding mutual X as these
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networks consist of billions of nodes and hundreds of billions

of edges. The solutions based on Spark or GraphX are still

prevalent in many companies like Tencent for their stability,

reusability and fault tolerance. However, GraphX requires

extensive computing resources while gaining unsatisfactory

performance in massive graph processing. Other distributed

graph computing frameworks such as PowerGraph [17], Gem-

ini [38], though outperform GraphX in terms of execution time

and memory consumption, are not suited for finding mutual

X in massive social networks either. Gemini assumes data

associated with each vertex have a fixed size, while in the

problem of finding mutual X, each vertex may associate with

arbitrary sized data. PowerGraph fails to process large graphs

due to memory limitations.

In this paper, we propose a high-performance and memory-

efficient solution for finding mutual X in massive social

networks. Our solution is well validated with several real-

world datasets, and now is running as a routine in production.

It takes about 10 minutes to calculate all mutual friends in the

real WeChat network. By squeezing all possible performance

out of our clusters through three aspects, i.e, algorithm, intra-

node optimizations, and inter-node optimizations, we achieve

12-36× speedup and 11-36× memory-saving compared with

the existing and fully optimized solution based on GraphX and

PowerGraph. Also, Our solution enables different algorithms,

applications, and services using mutual X as building blocks

to respond to the change of network structure more quickly.

The overview of our solution is shown in Figure 1, with three

main technical contributions.

First, we propose an efficient delegation-based algorithm

for finding mutual X in a distributed environment (see Session

III-A). Second, we improve the intra-node performance with a

hierarchical optimization strategy, including a fully pipelined
workflow, NUMA-aware graph sub-partitioning, and SIMD-

based dual sliding window set intersection (see Session III-B).

Third, we present a partitioning approach based on geo-

location as well as a semicircular computing and communi-

cation scheme to improve inter-node performance further and

avoid load imbalance (see Session III-C).

The rest of the paper is organized as follows. Section II

defines the finding mutual X problem and the challenges

we’ve met in our production environment. Section III describes

the optimizations in our solution. Section IV presents our

experimental results. We discuss related work in Section V

and conclude in Section VI.
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Fig. 1: The overview of our high-performance and memory-efficient design for finding mutual X.

II. BACKGROUND

A. Problem Definition

A social network can be denoted by an undirected graph

G(V,E,D), where V and E are the sets of vertices and

edges respectively, and D is the data associated with each ver-

tex(noted as property). Usually, V is all the users in the social

network. And if two persons, namely u and v are friends,

there exists two edges (u, v) ∈ E and (v, u) ∈ E. We assume

for each vertex u, Du is a list of integers. That truthfully

represent real-world social networks, since Du may represent

the friend ID list. The problem of finding mutual X for user

u and v can be defined as M(u, v) = {Du ∩Dv|(u, v) ∈ E}.

Hence, finding mutual X in a social network can be defined

as M = {M(u, v)|(u, v) ∈ E}.

Finding mutual X is a more general problem than triangle

counting. In the case of finding mutual friends, the property

Du denotes the friends of user u. For each user w in M(u, v),
(u, v, w) form a triangle in the graph, which makes the

problem equivalent to triangle counting. But in other cases,

like finding mutual interests both user u and user v have,

the property Du denotes the list of interests IDs user u have.

Since the graph G(V,E,D) is a user network, every vertex

represents a user, not interest. Thus mutual interest failed to

form a triangle.

B. Challenges in Finding Mutual X

The increasing size of graphs poses significant challenges

to distributed graph processing. It usually takes hours or even

days to finish one task in WeChat-scale graphs with hundreds

of computing nodes.

Therefore, it is vital for many services such as social

recommendations and social network marketing to update all

mutual X quickly. Towards this goal, there are three significant

challenges. (1) To the best of our knowledge, there are few

or even no public available algorithms customized for finding

mutual X; (2) Some MapReduce-based solutions heavily rely

on the ‘join’ operation, which is extremely expensive in both

execution time and memory consumption. The GraphX-based

solution outperforms MapReduce-based ones, but still needs

20-30 times more memory compared with the original input

graph. Listing 1 shows the pseudo-code of using GraphX to

find mutual X. PowerGraph [17] and Gemini [38] use less

memory and have better performance than GraphX . Gemini

fails to solve the finding mutual X problem since it assumes

data associated with each vertex have a fixed size. PowerGraph

can associate arbitrary sized data on each vertex, but it fails to

process large graphs due to memory limitations. (3) Although

some triangle counting algorithms inspire us, they still cannot

handle the general finding mutual X problem.

Listing 1: Finding Mutual X problem with GraphX

val graph: Graph[Array[Long]]
graph.triplets.map {
triplet =>
val srcId = triplet.srcId
val dstId = triplet.dstId
mutual = SetIntersection(triplet.srcAttr,

triplet.dstAttr)
(srcId, dstId, mutual)

}

III. METHODS

We overcome these challenges by designing a memory-

efficient and high-performance solution for finding mutual X

in three aspects (shown in Figure 1). First, a novel delegation-

base algorithm to find mutual X efficiently. Second, three intra-

node optimization strategies to squeeze all performance on a

single node. Third, three inter-node optimizations to improve

data locality, enable load balancing and reduce redundant

computation.

A. Delegation-based Algorithm

1) A Straight-Forward Approach: In distributed graph com-

puting, the entire graph is partitioned and stored on different
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servers. Different partition strategies greatly influence compu-

tation workloads and communication overheads. It is much

likely that the neighbors of a set of vertices are stored in

different partitions. For each edge (u, v) ∈ E, it is necessary to

move Du and Dv to one partition before computing M(u, v).
A straight-forward approach is to request the vertex’s prop-

erty D by sending requests. However, this approach results

in poor performance for two reasons. First, for each vertex

u, its property Du may be requested multiple times from the

same partition, leading to massive redundant messages. The

communication cost is about O(αE), where α is the average

length of D. Second, many CPU cycles are wasted or idle in

the request-response model.

We can eliminate the redundant messages by introducing

message sharing. For each vertex u, its property Du will be

sent to partition p, we can schedule the computation of all

{M(v, u)|v ∈ Vp, (v, u) ∈ Ep} as a batch in partition p.

Thus Du will be shared and reused inside each batch. The

communication cost can be reduced to O(αV P ), where P is

the number of partitions.

2) Delegation-based Algorithm: We propose a delegation-

based algorithm(1) for finding mutual X. Instead of pulling

the vertex properties from other partitions, we push the vertex

property to its neighbors and delegate the calculation of

mutual X problem to its neighbors. To further improve the

overall performance and hide the communication overhead,

we decompose the workflow into four sub-tasks: sending task,

receiving task, mutual X computing task and input/output task.

These tasks form a fully pipelined workflow.

Sending Task: The sending task determines which parti-

tions the messages are sent to. It also controls the message flow

to guarantee that there is no message flooding or replicated

messages in the network. Procedure SEND in Algorithm 1

describes the sending task. We iterate all neighbors of each

vertex and determine how they will be distributed according

to where the neighbors reside. Note that messages targeting

to the local partition are reused by moving pointers instead of

message passing. This task avoids sending duplicated data to

the same partition via processing a batch of vertices instead

of individuals.

In order to maximize communication efficiency, messages

are serialized before putting into the multi-level ring buffers

designed for each destination. On one hand, the buffers control

the message flow as the thread will wait unless there are

available buffers. On the other hand, it enables asynchronous

executions of serialization, communication, and mutual X

computation, which significantly improves the overall perfor-

mance.

Receiving Task: Receiving task is light-weighted as it only

collects messages from other partitions. Messages will then be

pushed to the lock-free queue for future computation.

Computing Task: As one of the hot spots of the entire

workflow, the computing task is responsible for mutual X

computation. We propose an efficient algorithm ( procedure

CalcMutual in Algorithm 1) for this problem. Our algorithm

is memory-efficient. Instead of buffering the received message

Algorithm 1 Delegation-based Algorithm

1: procedure SEND(Vi)

2: for v ∈ Vi do � iterate vertex in current partition

3: S(:) ← 0
4: for u ∈ Nv do � iterate neighbors of a vertex

5: p ← belong to partition(u)
6: S(p) ← 1 � mark partition p as dest

7: end for
8: for p ∈ {S|S(p) = 1} do � iterate destinations

9: if B(p).is avaiable() then � flow control

10: B(p).add and serialize(v,Dv)
11: else
12: wait until notified()

13: end if
14: if B(p).is full() then
15: AsyncSend(p,B) � send messages

16: end if
17: end for
18: end for
19: for p ∈ S do � flush buffers

20: AsyncSend(p,B)
21: AsyncSend(p, finish flag)
22: end for
23: end procedure
24: procedure CALCMUTUAL(Q)

25: while L ← Q.pop() do � Not finished

26: deserialize(L)

27: for (u,Du) ∈ L do
28: for v ∈ Nu do
29: if P.contains(v) then
30: Dv = P.get(v)

31: M(u, v) = Du ∩Dv

32: io lock free queue.push(M(u, v))
33: end if
34: end for
35: end for
36: end while
37: end procedure

in sequential execution, we reorder execution and perform all

calculations which need the message (line 28 to line 34).

Therefore, it is safe to drop the message afterward. The

most computationally intensive part in Algorithm 1 is set

intersection (line 32). It is a well-studied subject [15], [19]–

[21]. Inspired by previous ideas [19], [21], we proposed a new

set intersection algorithm, and put it into a fully pipelined

workflow.

IO Task: IO task is also a light-weighted task, which pops

the results from io lock free queue and writes them to HDFS

in CSV format.

3) Graph Representation in Dense Hashmap: Triangle

counting algorithms in most high-performance and memory-

efficient graph frameworks assume that the vertex IDs of

input graphs are consecutive starting from zero [5], [6], [30],
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Fig. 2: A fully pipelined workflow with five stages.

[38]. Under this assumption, the graph can be encoded in a

compressed sparse row (CSR) or compressed sparse column

(CSC) format. However, vertex IDs in real-world graphs are

not consecutive in most cases, and it is usually expensive to

rearrange the vertices, especially for dynamic graphs. On the

other hand, some work [23] shows ordering vertex IDs by

their degree may benefit subgraph enumeration. Considering

reordering vertex IDs is very expensive for graphs with billions

of nodes, the overhead is larger than the benefits.

In our case, instead of rearranging the graph, we store the

original vertex IDs in a dense hashmap [8], which is efficient

for the lookup operation. Also, we use bitsets to identify

vertices in partitions to further reduce the memory cost and

improve lookup performance.

B. Intra-node Optimizations

An interesting situation with today’s high-performance clus-

ter is that the scale of intra-node parallelisms may easily

match or exceed that of inter-node levels [38]. Therefore, we

carefully squeeze every bit of performance out of each node by

designing three-level parallelism: task, thread, and instruction.

1) A Fully Pipelined Workflow: Compared with existing

solutions [2], [5], [6], we decouple the job into individual

tasks, forming a pipeline with five stages running in parallel

(shown in Figure 2): search over neighbors, send vertex

property, receive vertex property, compute mutual X, and

output mutual X.

We assign multiple threads to each stage. Some stages

exchange information through lock-free queues (stage 1-2,

stage 3-4, and stage 4-5) while others do so via MPI buffers

(stage 2-3). We carefully tune the number of threads for

each stage to balance the execution time, enabling all stages

to overlap with each other and hide communication behind

computation.

Stage 1,4 focus on computation; stage 2,3 focus on com-

munication; and stage 5 focuses on input/output. As all stages

run in parallel, our design can maximize the utilization of

computing units, memory bandwidths, network bandwidths,

and storage bandwidths simultaneously while minimizing the

idleness between different stages.
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Fig. 3: SIMD-based set intersection.

2) NUMA-aware Graph Sub-Partitioning: Most modern

servers are built on the NUMA (Non-Uniform Memory Ac-

cess) architecture, where memory is physically distributed

on multiple sockets, each typically contains a multi-core

processor with local memory. Sockets are connected through

high-speed interconnects into a global cache-coherent shared-

memory system. Access to local memory is faster than to re-

mote memory, with both lower latency and higher bandwidth,

making it appealing to minimize inter-socket accesses.

Within a node, we partition the graph across multiple sock-

ets with NUMA enabled, assigning vertices to corresponding

sockets. NUMA-aware partitioning boosts the performance on

NUMA machines significantly. Both sequential accesses to

edges and random accesses to vertices are likely to fall into

the local memory, facilitating faster memory access and higher

last-level cache utilization simultaneously.

3) SIMD-based Set Intersection with Dual Sliding Window:
While tuning the number of threads for each stage, we

recognize that the stage of calculating mutual X takes the

most CPU cycles. The fundamental operation behind that is

set intersection. Many approaches focus on speeding up the

set intersection through making use of multi-core CPUs or

GPUs to utilize the parallelism offered by these processors

[4], [34], [37]. However, these approaches are thread-level

parallelism, conflicting with our pipelined workflow where

threads are assigned to stages. We improve the performance

of set intersection by exploring the data-level parallelism via

SIMD instructions available in almost all modern CPUs.

The SIMD instruction sets allow us to compare multiple

integers using only one instruction. Many works [19]–[21]

have done in optimizing set intersection with the power of

SIMD . The basic idea behind optimizing set intersection with

SIMD is presented in Figure 3. Step 2 : store four elements of

set A and B into 128-bit registers. Step 1 : obtain a mask of

common elements by comparing A with different cyclic shifts

of B. The resulting mask can be transformed into a four-bit

value indicating the common elements in segment A . Step

3 , in order to copy the common elements out, shuffle the

original elements according to the shuffling mask that can be

looked up in the precomputed dictionary using the shuffling

mask index.

However, with the evolving of computing hardware, prior
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Fig. 4: Performance set intersection implemented based

on different SIMD instructions. Baseline approach is

std::set intersection

works do not perform well on modern CPUs that equipped

with AVX512 instruction set. With AVX512, CPU can pro-

cess 512-bits data with only one instruction. It should be

faster than implementations that employ SSE(Streaming SIMD

Extensions) or AVX2, which can only process 128-bits and

256-bits data per instruction. Figure 4 shows the performance

of different set intersection implementations under various

data distributions. We can see that directly applying previous

techniques to AVX512 does not achieve expected performance

benefits. The reason is that in step 3 , the precomputed

dictionary size is 256KB and 128MB for AVX2 and AVX512

respectively. When the dictionary size cannot fit in CPU cache,

the performance drops dramatically.

Despite the bit width, AVX512 provides sets of new

instructions including vpcompressd and vpexpandd. These

two instructions can be easily used by programmers

via Intel Intrinsics mm512 mask compressstoreu epi32 and

mm512 mask expandloadu epi32. The first intrinsic takes

one 512-bit register a, memory pointer base addr and a 16-bit

mask k as input, it contiguously stores active 32-bit integers

in a (those with their respective bit set in write mask k) to

unaligned memory at base addr. The second one is able to

load contiguous active 32-bit integers from unaligned memory

at given mem addr (those with their respective bit set in given

mask k), and stores the results in 512-bit register dst using

given write mask k (elements are copied from given 512-bit

register src when the corresponding mask bit is not set).

To this end, we proposed a novel Dual Sliding Window
approach to unleash the power of AVX512. Different from

prior works, our approach exploits new instructions provided

by AVX512 to reduce the unnecessary comparing work. Algo-

rithm 2 and Figure 5 shows how Dual Sliding Window works.

The algorithm takes two ordered arrays as input and the

results are output to out. It maintains indices and masks for

these two input arrays. Initially, the masks are filled with one,

means that all registers need to be stored with new data(line 2

to line 5). Then, the algorithm iteratively loads data from both

array’s comparison windows to registers, does comparison,

and outputs the mutual elements to the given output array.

Firstly, it sequentially loads new data from a given array into

registers(line 7 to line 8). The data loaded will be put into

register according to active masks ma. For those have non-

active masks in the register, data will keep the same. Secondly,

slide to the next comparison window(line 9 to line 16). Since

the two input arrays are sorted, we can get the maximum value

of the two windows by their index + l − 1. The maximum

values are stored in a max and b max. We broadcast those

values in two register va max and vb max. New masks

of ArrA can be calculated by comparing the max value of

ArrB and window va. Indices can be updated according to

the number of active values in masks. Finally, do SIMD all

equal comparison for register ra and rb like prior works. And

output equal elements with given masks by using intrinsic

mask compressstoreu.

Because the set intersection performance is greatly related

to the size of two sets, we adaptively select the best set

intersection algorithm according to the size of sets in our

implementation. Dual sliding window approach enriches the

potential algorithm choices.

Algorithm 2 Dual Sliding Window Algorithm

1: procedure SETINTERSECTION(ArrA, ArrB, out) �
ArrA and ArrB are sorted array

2: ia ← 0, ib ← 0 � initialize index

3: l ← 16 � maximum data size that one register can

hold

4: ma ← 0xFFFF � initialize masks

5: mb ← 0xFFFF

6: while ia ≤len(ArrA)−l && ib ≤ len(ArrB)−l do
7: va ← mm512 mask expandloadu(va,ma,ia)

8: vb ← mm512 mask expandloadu(vb,mb,ib)
9: a max ← ArrA[ia+ l − 1]

10: b max ← ArrB[ib+ l − 1]

11: va max ← mm512 set1(a max)

12: vb max ← mm512 set1(b max)

13: ma ← mm512 cmple mask(va, vb max)

14: mb ← mm512 cmple mask(vb, va max)

15: ia ← ia+ mm popcnt u32(ma)

16: ib ← ib+ mm popcnt u32(mb)
17: mout = ALL CMP EQUAL(va, vb)
18: mm512 mask compressstoreu(out,mout,va)

19: end while
20: end procedure
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Fig. 5: SIMD based Intersection with Dual Sliding Window.

C. Inter-node Optimizations

1) Graph Partitioning Based on Geo-Location: Traditional

strategies for graph partitioning include vertex-cut and edge-

cut partitioning. However, they suffer from poor load balance

due to the power-law distribution of vertex degrees exhib-

ited in most real-world graphs and intensive communication

overhead in our scenarios. Because each person’s friends

are usually spread across all partitions. Therefore, to gain

high-performance, it is essential to partition the graph so

as to maximize load balance and minimize communication

overheads.

Inspired by the fact that people within a city or province

are more likely to be connected, we partition the graph based

on the geo-location of people, assigning the users within a

specific region to the same partition. Similar scenarios also

exist in many other large-scale graphs such as the Facebook

network [35] and web graphs [10]. This approach effectively

reduces network traffic because most people can find their

friends in the same local partition.

2) Diagonal Computation and Communication: The

WeChat network is an undirected graph, most nodes are

connected via two links in both directions. It is intuitive as

‘you are my friend’ implies ‘I am your friend’ by default, i.e.,

M(u, v) = M(v, u). Therefore, we fold symmetric friendships

to reduce computation and communication costs. For example,

if there are edges between (u, v) and (v, u), only M(u, v) or

M(v, u) is necessary.

In order to avoid redundant computation, we need to de-

termine whether M(u, v) or M(v, u) will be calculated. A

straight-forward idea is to compute {M(u, v)|u < v}. We call

it the diagonal approach. For instance, if there are seven

partitions (0-6) in Figure 6(a), users in partition Pi need to

send their vertex properties to partition Pi+1, Pi+2, . . . , Pn−1,

where n is the number of partitions. The colored cells in row

i are the destination partitions. We can also understand the re-

ceiving and computing behaviors from the column aspect: col-

umn i receives and calculate mutual X from P0, P1, . . . , Pi−1,

denoted by colored cells in each column.
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Fig. 6: Two strategies for halving computation and communi-

cation costs: diagonal and semicircular approaches.

3) Semicircular Computation and Communication: The

diagonal approach proposed above is intuitive and easy to

implement. However, it suffers from severe load imbalance.

Partition P0 sends messages to all other partitions while

partition Pn−1 does not send any message. On the other hand,

partition P0 does not receive any message and only performs

mutual X computation locally (grey cell) while partition Pn−1

receives messages from all other partitions and performs

intensive calculations.

We solve the load imbalance issue by proposing the semi-

circular computation and communication strategy, shown in

Figure 6(b). Instead of computing the mutual X according

to the numerical order of IDs, we pre-define a set of parti-

tions where vertex properties in partition Pi will be sent. In

semicircle strategy, vertex properties in partition Pi will be

sent to partition P(i+1)%n, P(i+2)%n, . . ., P(i+n
2 )%n, where %

sign is the modulus operator. In this way, each partition sends,

receives, and computes nearly the same amount of tasks.

IV. EVALUATION

We deploy our design and existing solutions for compar-

isons on a high-performance Apache Hadoop Yarn cluster

with MPI enabled. Each computing node in the cluster owns
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Fig. 7: Performance impact of different optimization ap-

proaches.

two NUMA nodes (Intel Xeon E5-2670 v3), with each node

containing 12 physical processors running at 2.3 GHz, 64GB

DDR3 memory, and AVX2 instruction set enabled. All nodes

are interconnected via 10 Gigabit Ethernets. We implement

our design in C++ using GNU g++-4.8.2 compiler with

high optimization flags (-O3, -fopenmp). The datasets used

in our experiments are real social networks in WeChat. We

call it the full-scale dataset. We generate two more datasets

in different sizes by sampling the full-scale dataset based on

users’ geographical location. To evaluate the effectiveness of

Dual Sliding Window, we perform another benchmark on Intel

Xeon Gold 6133, which is customized for Tencent Cloud,

equipped with AVX512 instruction set.

A. Performance Results and Comparisons

The speedup of significant optimizations in our design is

shown in Figure 7. Though we try to find out the relative

significance among these optimizations, it is hard to compare

the contribution of some techniques, as they often assist each

other (for example, the delegation-based algorithm and the

pipelined workflow). The speedup is measured at the scope

of each task instead of the whole procedure. For example,

the SIMD-based set intersection achieves 3.4× speedup only

for set intersections. The delegation-based algorithm and the

pipelined workflow contribute over 2× speedup to the overall

performance. The semicircular computation and communi-

cation strategy expressively reduce the overall execute time

by nearly 1.9×. Other optimizations can also improve the

performance by 120% to 180%.

We compare the performance of our design with finding

mutual X solutions in two state-of-the-art distributed graph

framework: GraphX and PowerGraph. Table I shows the

execution time and memory consumption of our solution and

the best existing ones. The memory consumption is measured

roughly by tuning the size of allocated memory until the

out-of-memory error arises. Note that we have eliminated the

Fig. 8: The weak scaling results with or without preprocessing

and input/output, scaling from 96 processors to 768 processors.

number of edges in the full-scale dataset as the precise number

is not authorized for publication.

The GraphX-based solution requires a large amount of

memory for each executor (50 GB per executor) in order

to achieve the best performance because the GraphX adopts

vertex-cut partition strategy where fewer partitions (executors)

imply fewer vertex replications. We assign four cores for each

executor. Assigning more cores does not improve the perfor-

mance. PowerGraph performs well on small graph(dataset 1)

and uses less memory than GraphX . But fails to run on

larger graphs(dataset 2 and 3) due to out-of-memory error.

On the other hand, our solution is promisingly memory-

efficient, achieving up to 11× to 36× memory saving. Because

memory usage is no longer the bottleneck of our solution, we

can make full use of all computing units through enabling

hyperthreading techniques. We achieve 36.8× performance

speedup and 36× memory reduction in the best case. In

addition, it only takes about 8 minutes with 50 computing

nodes to calculate all pairs of mutual friends in the full-scale

WeChat graph with over billions of nodes and hundreds of

billions of edges.

B. Weak and Strong Scalability

Figure 8 demonstrates the weak scaling results of finding

mutual X with or without preprocessing and input/output,

scaling from 96 processors to 768 processors. The cases

with preprocessing and input/output have similar weak scaling

behaviors with the non-preprocessing and non-input/output

one. The reason behind is that the original input graph is well

partitioned across computing nodes and the communication is

almost entirely hidden by computation.

Figure 9 shows the strong scaling benchmark test results

with or without preprocessing and input/output, based on

the full-scale WeChat network. Our software achieves similar

speedup in all cases. The degradation in performance as the

number of processors increases results from the decrease of

the ratio of computation to communication. However, strong

scaling is less critical than weak scaling for finding mutual
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TABLE I: Performance summary of the best existing solution and ours. ‘perf’ and ‘mem’ refer to performance speedup and

memory reduction of our solution to the best of GraphX and PowerGraph, respectively. ‘-’ refers to values that are unauthorized

for publication. ‘OOM’ means out of memory.

Dataset GraphX PowerGraph Our Solution Comparison

#
vertices
(million)

edges
(billion)

(executors,
core/executor)

memory
(GB)

time
(min)

(process,
core)

memory
(GB)

time
(min)

(process,
core)

memory
(GB)

time
(min)

perf mem

1 17+ 2+ (8, 4) 400 101 (2, 24) 110 7.15 (2, 24) 10 0.56 12.7 × 11−
2 500+ 100+ (360, 2) 18,000 150 (24, 24) OOM(>2400) Inf (24, 24) 500 4.07 36.8× 36
3 1,000+ - (800, 2) 40,000 168 (50, 24) OOM(>5000) Inf (50, 24) 1,100 7.43 22.6× 36

Fig. 9: The strong scaling results, with or without preprocess-

ing and input/output, scaling from 96 to 720 processors.

friends problems, in which hundreds of billions of edges in

the graph are involved.

C. The effectiveness of Dual Sliding Window SIMD Set Inter-
section

We conducted another micro-benchmark to show how Dual

Sliding Window helps improve the set intersection perfor-

mance. The benchmark is performed on Intel Xeon Gold 6133

which has AVX512 enabled. We benchmarked set intersection

with different sizes. The result is as Figure 10 shows. Dual

sliding window approach can achieve about 4.5× speedup

compared with naive approach(shuffling avx512). With the

skewness of two sets size increase, dual sliding window

approach performs worse than galloping approach [20] since

it needs more comparisons.

V. RELATED WORK

Triangle Counting Algorithms. Triangle counting problem

has a rich history and it is a well-studied problem [9],

[27], [29]. Although a fairly large volume of work has been

done addressing the performance and memory usage for the

triangle counting problem, much less attention was given to

the problems associated with massive networks that do not

fit in the main memory. Several techniques can be employed

to deal with such massive graphs: streaming algorithms [7],

[9], sparsification based algorithms [27], external-memory

algorithms [13], and distributed memory parallel algorithms

[5], [6], [31]. We consider distributed parallel algorithms

are more practical in our scenarios. Among these distributed

Fig. 10: The effectiveness of dual sliding window approach of

set intersection.

algorithms for triangle counting, the most memory-efficient

one with the best performance is proposed by Arifuzzaman

[6]. However, the algorithm in [6] causes message flooding

when processing a large graph because there is no flow control.

Message buffers will consume all system memory in the

end. On the other hand, [6] and [5] employ pure MPI-based

parallelism, with each core running an MPI process. They are

not efficient in real massive graph processing when thousands

or even hundreds of thousands of processes are required due

to expensive communication overhead between processes.

Graph Mining Systems. There are many graph mining

systems designed for finding motifs in large scale graphs.

Triangle finding problem is a special case of motif finding.

Arabesque [33] is the first distributed graph mining system.

It proposed an embedding-centered API to simplify the devel-

opment of scalable graph mining algorithms. BigJoin [3] treat

motif finding as multi-join of binary relations and apply worst-

case optimal join algorithms on a data-parallel system [26].

RStream [36] and AutoMine [25] can mine large scale graphs

with a single machine. Prior works target at general graph

mining problems. Our system only targets at finding mutual

X in graphs and enables a set of specialized optimizations.

Set Intersection Algorithms. [20] proposed a SIMD based
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set intersection algorithm to reduce CPU branch mispredic-

tions. [12] studied two set intersection algorithms on Intel

Xeon Phi and NVIDIA GPUs, and proposed several opti-

mizations. [19] proposed two optimizations for merge-base set

intersection algorithm to achieve inter-chunk and intra-chunk

parallelism. All of the prior works perform well on GPU or

CPU armed with AVX256 and SSE instructions. However,

to the best of our knowledge, our approach (Dual Sliding

Window Set Intersection Algorithm) is the first set intersection

algorithm that exploits the AVX512 instruction.

VI. CONCLUSION

We present a high-performance and memory-efficient solu-

tion for finding mutual X in massive social networks. This

design can deal with networks that have billions of nodes and

hundreds of billions of edges. Such capability enables various

types of analysis that require finding mutual X in massive

real-world networks. Our design is well validated. It takes

less than 10 minutes to find all mutual friends in the WeChat

network. Compared with existing industrial solutions based on

Spark GraphX, we achieve 22-36× speedup and 36× memory

reduction. Compared with PowerGraph, our solution achieves

12.7× speedup and 11× memory reduction. With our solution,

applications and services using mutual X as building blocks

can respond to the change of network structure more quickly.
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